Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM)
*NOTE: chứng minh đc vì (x-y)^2 >= 0 ; x^2 +xy +y^2 > 0
mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé
Bài 2 :
Ta có :
\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a^2b-ab^2+a^2c-ac^2}{\left(b+c\right)\left(b^2+c^2\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)( 1 )
\(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)( 2 )
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-c\right)}{\left(a+b\right)\left(a^2+b^2\right)}\) ( 3 )
Cộng ( 1 ) , ( 2 ) , ( 3 ) ta được :
\(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
\(=ab\left(a-b\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)
\(+ac\left(a-c\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b62\right)}\right]\)
\(+bc\left(b-c\right)\left[\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b^2\right)}\right]\)
Theo đề bài thì \(a,b,c>0\)( các biểu thức trong các dấu ngoặc đều không âm ) \(\Leftrightarrow dpcm\)
Thấy đúng thì tk nka !111
Bài 3:
ta có : \(a^4+b^4\ge2a^2b^2\)
Cộng \(a^4+b^4\) vào 2 vế ta được:
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\Leftrightarrow a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
Ta cũng có : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)
\(\Leftrightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^4\)
mà theo bài thì \(a+b>1\)\(\Rightarrow dpcm\)
TK MK NKA !!!
Ta có: \(8\left(x^4+y^4\right)\ge4\left(x^2+y^2\right)^2\ge\left(x+y\right)^2=1\)
Và: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
=> ĐPCM
Ta có \(1=x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow xy\le\frac{1}{4}\)
Ta lại có
8(x4 + y4) = 8[(x2 + y2)2 - 2x2y2
= 8{[(x + y)2 - 2xy]2 - 2x2y2 }
\(\ge\)\(8\left(\left(1-\frac{1}{2}\right)^2-\frac{1}{8}\right)=1\)(1)
Ta lại có
\(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=4\)(2)
Từ (1) và (2)
\(\Rightarrow8\left(x^4+y^4\right)+\frac{1}{xy}\ge5\)
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Mà x+y>1 \(\Rightarrow x^2+y^2>\frac{1}{2}\)
Ta có: x − y 2 ≥ 0
⇔x 2 + y 2 ≥ 2xy
⇔2x 2 + 2y 2 ≥ x + y 2
⇔x 2 + y 2 ≥ 2 x + y 2
Mà x+y>1
⇒x 2 + y 2 > 2
ta có, 1/2 = 0,5
mà 0,5 < 1
theo đề bài, x+y>1
=> x2 + y2 chắc chắn > 1/2
>.<
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
c) Ta có a + b > 1 > 0 (1)
Bình phương 2 vế: \(\left(a+b\right)^2>1\) \(\Leftrightarrow\) \(a^2+2ab+b^2>1\) (2)
Mặt khác \(\left(a-b\right)^2\ge0\) \(\Rightarrow\) \(a^2-2ab+b^2\ge0\) (3)
Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\) \(\Rightarrow\) \(a^2+b^2>\frac{1}{2}\) (4)
Bình phương 2 vế của (4): \(a^4+2a^2b^2+b^4>\frac{1}{4}\) (5)
Mặt khác \(\left(a^2-b^2\right)^2\ge0\) \(\Rightarrow\) \(a^4-2a^2b^2+b^4\ge0\) (6)
Cộng từng vế của (5) và (6): \(2\left(a^4+b^4\right)>\frac{1}{4}\) \(\Rightarrow\) \(a^4+b^4>\frac{1}{8}\) (đpcm).
1/ Áp dụng hẳng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\) là ra bạn nhé
\(A=\left[\left(3^2-1\right)\left(3^2+1\right)\right]\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^4-1\right)\left(3^4+1\right)\right]\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^8-1\right)\left(3^8+1\right)\right]\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^{16}-1\right)\left(3^{16}+1\right)\right]\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=3^{64}-1\)
\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)
Ta có:
\(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Dấu "=" khi \(x=y\)
Áp dụng:
\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left(\frac{\left(x+y\right)^2}{2}\right)^2}{2}=\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\)
Dấu = khi \(x=y=\frac{1}{2}\)
Nhầm
\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left(\frac{\left(x+y\right)^2}{2}\right)^2}{2}>\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\)