K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Vì \(x+y=15\Rightarrow\left(x+y\right)^2=225\)

\(\Rightarrow x^2+2xy+y^2=225\)

Mà x.y = -100

\(\Rightarrow x^2-200+y^2=225\)

\(\Rightarrow x^2+y^2=425\)

3 tháng 6 2016

Mình hướng dẫn bạn nhé :))

a) \(A=\left(x+y\right)^2-2xy=15^2-2\cdot\left(-100\right)=...\)

b) \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=15^3-3.\left(-100\right).15=...\)

3 tháng 6 2016

a﴿ A = x + y 2 − 2xy = 15 2 − 2 · −100 = ... b﴿ x 3 + y 3 = x + y 3 − 3xy x + y = 15 3 − 3. −100 .15 = ... 

23 tháng 7 2018

\(x^2+y^2=\left(x+y\right)^2-2xy=15^2-2.\left(-100\right)=425\)

10 tháng 7 2021

Bài 1 : 

a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi y = 1/2 

Vậy GTNN B là 3/4 khi y = 1/2 

c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)

Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2 

10 tháng 7 2021

Bài 3 : 

a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )

b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )

Bài 4 : 

\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)

Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)

Bài 5 : 

\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)

\(=2y.2x=4xy=VP\)( đpcm ) 

13 tháng 7 2019

a, x + y = 3 => (x + y)2 = 9 <=> x2 + 2xy + y2 = 9 <=>  5 + 2xy = 9 <=> 2xy = 4 <=> xy = 2

Ta có: x3 + y3 = (x + y)(x2 - xy + y2) = 3 . (5 - 2) = 3 . 3 = 9

b, x - y = 5 => (x - y)2 = 25 <=> x2 - 2xy + y2 = 25 <=> 15 - 2xy = 25 <=> -2xy = 10 <=> xy = -5

Ta có: x3 - y3 = (x - y)(x2 + xy + y2) = 5 . (15 - 5) = 5 . 10 = 50 

19 tháng 7 2018

ta có: x2+y2
=> (x+y)^2-2xy
=>15^2-2(-100)
=>225+200
=>425

 

a)

Sửa đề: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=x^2+y^2+1+2x-2y-2xy+36\)

\(=\left(x-y+1\right)^2+36\)(1)

Thay x-y=7 vào biểu thức (1), ta được:

\(A=\left(7+1\right)^2+36=8^2+36=100\)

Vậy: 100 là giá trị của biểu thức \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\) tại x-7=7