\(x^2y+xy^2+x+y=2010\)

tính S=\(x^3+y^3\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

ta có : \(x^2y+xy^2+x+y=2010\)(1)

\(\Leftrightarrow xy\times\left(x+y\right)+\left(x+y\right)=2010\)

\(\Leftrightarrow\)( xy + 1 ) ( x + y ) = 2010

mà xy=11 \(\Rightarrow\)xy+1=12

(1)\(\Leftrightarrow\)12 (x + y ) = 2010

     \(\Leftrightarrow\)x + y = 167,5

lại có S\(=x^3+y^3\)

         S \(=\left(x+y\right)^3-3xy\left(x+y\right)\)

         S\(=167,5^3-3\times11\times167,5\)

         S \(=\)4693894,375

10 tháng 2 2019

Trả lời :

Ta có :

\(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)

\(=\left(x+y\right)^2+7\left(x+y\right)+10\)

\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

Hok tốt

10 tháng 2 2019

a) \(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)

\(=\left(x+y\right)^2+7\left(x+y\right)+10\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)

\(=\left(x+y+2\right)\left(x+y+5\right).\)

b) \(x^2y+xy^2+x+y=2010\)

\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)

\(\Leftrightarrow11\left(x+y\right)+1\left(x+y\right)=2010\)

\(\Leftrightarrow12\left(x+y\right)=2010\)

\(\Leftrightarrow x+y=\frac{335}{2}\)

\(\Leftrightarrow\left(x+y\right)^2=\frac{112225}{4}\)

\(\Leftrightarrow x^2+2xy+y^2=\frac{112225}{4}\)

\(\Leftrightarrow x^2+y^2+22=\frac{112225}{4}\)

\(\Leftrightarrow x^2+y^2=\frac{112137}{4}.\)

Vậy \(x^2+y^2=\frac{112137}{4}.\)

30 tháng 1 2019

a,\(x^2+2xy+7x+7y+y^2+10=\left(x^2+2xy+y^2\right)+7\left(x+y\right)+10\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)

\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

b,\(x^2y+xy^2+x+y=2010\Rightarrow xy\left(x+y\right)+x+y=2010\)

\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=167,5\)

Ta có:\(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(167,5\right)^2-2.11=28034,25\)

4 tháng 2 2018

\(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+\frac{49}{4}-\frac{9}{4}\)

\(=\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}-\frac{9}{4}\)

\(=\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\)

\(=\left(x+y+\frac{7}{2}-\frac{3}{2}\right)\left(x+y+\frac{7}{2}+\frac{3}{2}\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

4 tháng 2 2018

b)Ta có: x2y+xy2+x+y=2010

<=>xy.x+xy.y+x+y=2010

<=>11x+11y+x+y=2010

<=>12(x+y)=2010

<=>x+y=167,5

=>(x+y)2=28056,25

<=>x2+y2+2xy=28056,25

<=>x2+y2=28034,25

31 tháng 8 2017

C=720

28 tháng 2 2019

\(x^2y+xy^2+x+y=2018\)

\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2018\)

\(\Leftrightarrow\left(xy+1\right)\left(x+y\right)=2018\Leftrightarrow12\left(x+y\right)=2018\)

\(\Leftrightarrow x+y=\frac{1009}{6}\)

\(x^2+y^2=\left(x+y\right)^2-2xy=\left(\frac{1009}{6}\right)^2-2.11=...\)

2 tháng 4 2017

k mk đi làm ơn 

mk đang bị âm điểm

2 tháng 4 2017

bạn giúp mình đi làm ơn

mình đang ko biết cách làm

9 tháng 8 2019

bạn đặt nhân tử chung là xong bài rồi

29 tháng 2 2020

\(VT=\left(\frac{1}{x^3+y^3+xy\left(x+y\right)}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^3+y^3+xy\left(x+y\right)+2xy\left(x+y\right)}+2+\frac{5}{\left(x+y\right)^2}=11\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

1 tháng 3 2020

Ta có:

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{1}{a+b}\) với a,b dương

Do x+y=1 nên ta có:

\(A=\frac{1}{x^3+xy+y^3}+\frac{4y^2x^2+2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

Ta có:

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)

Ta sử dung bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)thì \(4xy+\frac{1}{4xy}=\frac{4xy}{1}+\frac{1}{4xy}\ge2\)

Mặt khác 

\(1=\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)Nên ta suy ra:

\(A=\frac{1}{x^3+xy+y^3}+\frac{4y^2x^2+2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\ge4+2+5=11\)

Dấu "=" xảy ra khi và chỉ khi x=y=\(\frac{1}{2}\)

18 tháng 12 2017

Phân thức đại sốPhân thức đại số