\(x+y=1\). Tính giá trị của B biết \(B=x^3+y^3+3\left(xy-1\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

X=2007 đúng 100%

25 tháng 8 2018

M = ( x - y )3 - ( x - y )2 

   = 73 - 72 = 294

N = x3 + x2  - y2 + y2 + xy - 3x2y +3xy2 - 3xy - 95

  = ( x - y )3 + ( x - y )2 - 95

  = 73 + 72 - 95 = 297

Mình không chép lại đề nhé !

Bạn chép sai đề rồi , câu b ( x - y + 1 ) mới đúng nha

14 tháng 11 2019

a)\(N=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)

\(=\left(\frac{x^2}{\left(x-y\right)\left(x+y\right)}+\frac{xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^4-y^4\right)\left(x-y\right)}\)

\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}:\frac{\left(x^2+xy+y^2\right)}{x^4-y^4}\)

\(=\frac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)

\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{x^2-y^2}=x^2+y^2\)

b) Ta có: \(x+y=\frac{1}{40}\)

\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)

\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)

\(\Rightarrow x^2-\frac{1}{40}+y^2=\frac{1}{1600}\)

\(\Rightarrow x^2+y^2=\frac{1}{1600}+\frac{1}{40}\)

\(\Rightarrow x^2+y^2=\frac{41}{1600}\)

Vậy \(N=\frac{41}{1600}\)

24 tháng 2 2020

a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)

\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)

\(-2y^3\left(4x^3-xy^2+y^3\right)\)

\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)

\(-8x^3y^3+2xy^5-2y^6\)

\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)

\(-\left(x^3y^3+8x^3y^3\right)\)

\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)

24 tháng 2 2020

b) 

(!)  \(2\left(x+y\right)^2-7\left(x+y\right)+5\)

\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)

\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)

\(=\left(2x+2y-5\right)\left(x+y-1\right)\)

(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)

\(=2\left(xy+yz+zx\right)\)

16 tháng 12 2017

a)  A \(=\)\(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)\(=\)\(\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)

\(=\)\(\frac{2\left(x-2\right)}{x+2}\)\(=\)\(\frac{2x-4}{x+2}\)

Tại   x = \(\frac{1}{2}\)thì:

             A = \(\frac{2.\frac{1}{2}-4}{\frac{1}{2}+2}\)\(=\)\(\frac{-3}{\frac{5}{2}}\)\(=\)\(\frac{-6}{5}\)

29 tháng 11 2018

\(a,\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)

\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)

\(=\frac{2\left(x-2\right)}{x+2}\)

Với \(x=\frac{1}{2}\)

\(\Rightarrow\frac{2\left(x-2\right)}{x+2}=\frac{2\left(\frac{1}{2}-2\right)}{\frac{1}{2}+2}=\frac{2.-\frac{3}{2}}{\frac{5}{2}}=-3.\frac{2}{5}=\frac{-6}{5}\)

b,Do x = -5; y = 10=> y = -2x

Thay y = -2x vào biểu thức ta được

\(\frac{x^3-x^2\left(-2x\right)+x\left(-2x\right)^2}{x^3+\left(-2x\right)^3}\)

\(=\frac{x^3+2x^3+2x^2}{x^3-8x^3}\)

\(=\frac{3x^3+2x^2}{-7x^3}=\frac{3}{-7}+\frac{2}{-7x}\)

Thay x = -5 là đc

10 tháng 12 2019

Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)

<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)

<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)

(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0

( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y

nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y

Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

<=> \(x=y=\frac{1}{3}\)

10 tháng 12 2019

Làm tiếp:

Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P

ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)

29 tháng 10 2016

a) A = 5(x + 3)(x - 3) + (2x + 3)2 + (x - 6)2 = 5(x2 - 9) + (4x2 + 12x + 9) + (x2 - 12x + 36) = 10x2 

Tại x = -2,A = 10.(-2)2 = 40

b) x2 + y2 = x2 + 2xy + y2 - 2xy = (x + y)2 - 2.(-25) = 102 + 50 = 150