\(M=8x^2+16x^2y+16xy^2+8y^2-5x-5y+2018\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

\(M=8x^2+16x^2y+16xy^2+8y^2-5x-5y+2018\)

\(=8\left(x+y\right)^2-16xy+16x^2y+16xy^2\)\(-5\left(x+y\right)+2018\)

\(=8\left(x+y\right)^2+16xy\left(x+y-1\right)-5\left(x+y\right)+2018\)

Thay \(x+y=1\)

\(\Rightarrow M=8+16xy.\left(1-1\right)-5.1+2018\)

\(\Rightarrow M=2021\)

28 tháng 12 2018

Hôm trước chưa rảnh, hôm nay đáp lễ nè :))

13 tháng 12 2022

Bài 2:

\(M=8\left(x^2+y^2+2x^2y+2xy^2\right)-5\left(x+y\right)+2018\)

\(M=8\left[\left(x+y\right)^2-2xy+2xy\left(x+y\right)\right]-5+2018\)

\(=8\left[1-2xy+2xy\right]+2013\)

=8+2013

=2021

29 tháng 6 2017

Phép chia các phân thức đại số

21 tháng 12 2019

mk ko vt lại đề 

=> (4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0

=>(2x+2y)^2+(x-1)^2+(y+1)^2=0

...... phần này bn tự làm đc

=>x=1,y=-1

thay vào là dc

21 tháng 12 2019

Ta có : \(5x^2+5y^2+8xy-2x+2y+2=0\)

=> \(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)

=> \(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta có \(\left(2x+2y\right)^2\ge0\forall x,y\)   ,   \(\left(x-1\right)^2\ge0\forall x\)   ,   \(\left(y+1\right)^2\ge0\forall x\)

=> \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}}\)

Thay vào M ta có:

\(M=0^{2016}+\left(1-2\right)^{2018}+\left(-1+1\right)^{2019}=1\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:

a)

\(S=12(x^3+y^3)+16x^2y^2+34xy\)

\(=12[(x+y)^3-3xy(x+y)]+16x^2y^2+34xy\)

\(=12(1-3xy)+16x^2y^2+34xy=12+16x^2y^2-2xy\)

\(=(4xy-\frac{1}{4})^2+\frac{191}{16}\geq \frac{191}{16}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x+y=1\\ xy=\frac{1}{16}\end{matrix}\right.\Leftrightarrow (x,y)=(\frac{2+\sqrt{3}}{4}, \frac{2-\sqrt{3}}{4})\)

Vậy \(S_{\min}=\frac{191}{16}\) khi \(\Leftrightarrow (x,y)=(\frac{2+\sqrt{3}}{4}, \frac{2-\sqrt{3}}{4})\) và có hoán vị.

b)

\(A=5(x^3+y^3)+12xy+4x^2y^2\)

\(=5[(x+y)^3-3xy(x+y)]+12xy+4x^2y^2\)

\(=5(1-3xy)+12xy+4x^2y^2\)

\(=5+4x^2y^2-3xy\)

Áp dụng BĐT Cô-si: $1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$

$A=4x^2y^2-3xy+5=xy(4xy-1)-\frac{1}{2}(4xy-1)+4,5=(xy-\frac{1}{2})(4xy-1)+4,5$

Vì $xy\leq \frac{1}{4}\Rightarrow 4xy-1\leq 0; xy-\frac{1}{2}< 0\Rightarrow (xy-\frac{1}{2})(4xy-1)\geq 0$

$\Rightarrow A=(xy-\frac{1}{2})(4xy-1)+4,5\geq 4,5$

Vậy $A_{\min}=4,5$ khi $x=y=\frac{1}{2}$

12 tháng 11 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

8 tháng 12 2019

\(5x^2+5y^2+8xy+2x-2y+2=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+4\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+4\left(x+y\right)^2=0\)

\(\Rightarrow x=-1;y=1\)

Khi đó:

\(M=\left(1-1\right)^{2010}+\left(2-1\right)^{2011}+\left(1-1\right)^{2012}\)

\(=1\)

2 tháng 9 2017

X=2007 đúng 100%