\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)

Dấu "=" xảy ra khio x=y=1/2

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

19 tháng 10 2020

Bổ đề: \(2xy\le x^2+y^2\)

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{4}{2xy}\ge\frac{1}{x^2+y^2}+\frac{4}{x^2+y^2}=\frac{5}{x^2+y^2}\ge5\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)

12 tháng 3 2017

???????

12 tháng 3 2017

\(A=\frac{1}{x^2+y^2}+\frac{5}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{9}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{9}{2\left(\frac{x+y}{2}\right)^2}\)

nên  \(A\ge4+9.2=22\)

Dấu bằng xảy ra khi và chỉ khi  \(x=y=\frac{1}{2}\)

12 tháng 5 2018

Ta có : \(A=xy+\frac{1}{xy}=\left(16xy+\frac{1}{xy}\right)-15xy\)

Áp dụng bất đẳng thức Cauchy , ta có :

\(16xy+\frac{1}{xy}\ge2.\sqrt{16xy.\frac{1}{xy}}=8\)

Suy ra \(A\ge8-15xy\)

Ta lại có  \(xy\le\frac{\left(x+y\right)^2}{4}\)

<=> \(15xy\le\frac{15.1}{4}=\frac{15}{4}\)

<=> \(-15xy\ge\frac{15}{4}\)

Suy ra \(A\ge8-\frac{15}{4}=\frac{17}{4}\)

Đẳng thức xảy ra <=> x = y = \(\frac{1}{2}\)

7 tháng 10 2019

Ta có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(BĐT Svacxo)

\(\Rightarrow\frac{1}{2}\ge\frac{4}{x+y}\)

\(\Leftrightarrow x+y\ge8\)(1)

Áp dụng BĐT Cauchy cho 2 số không âm:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)

\(\Rightarrow\frac{1}{2}\ge\frac{2}{\sqrt{xy}}\)

\(\Leftrightarrow\sqrt{xy}\ge4\)(2)

Từ (1) và (2) suy ra \(x+\sqrt{xy}+y\ge16\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge16\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}\ge4\)

10 tháng 10 2019

Muốn cô k cũng dễ lắm. Tuy nhiên cái cô muốn là các em làm được bài trên OLM sẽ nhìn ra được những lỗi sai của mình thì để lần sau trong các cuộc thi HSG hay các bài kiểm tra trên lớp sẽ không bị mắc phải những cái lỗi tương tự.

bài phía dưới: Từ (1) , (2) => \(x+2\sqrt{xy}+y\ge16\) nha

Bỏ qua lỗi này. Cái quan trọng là khi tìm giá trị lớn nhất hoặc nhỏ nhất em cần phải biết nó đạt tại x =?, y=?.

nếu bỏ qua phần này sẽ bị trừ điểm rất nặng. :)

7 tháng 10 2019

tích cho t nha

7 tháng 10 2019

làm đi r le duy manh

16 tháng 5 2019

Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)

\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)

=> \(A\ge-\frac{2}{3}\)

\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)

16 tháng 5 2019

Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a

c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

KL:.............................

 
7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3