Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)< \left(x+y\right)\left(x^2-y^2\right)\)
\(\Leftrightarrow x^3+xy^2-yx^2-y^3< x^3+x^2y-y^2x-y^3\)
\(\Leftrightarrow xy^2-yx^2< x^2y-y^2x\)
\(\Rightarrow2xy^2< 2yx^2\)
\(\Rightarrow y< x\)(luôn đúng)
Vậy \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)
\(\Leftrightarrow\frac{x^2-y^2}{x^2+y^2}-\frac{x-y}{x+y}>0\)
\(\Leftrightarrow\frac{\left(x^2-y^2\right)\left(x+y\right)-\left(x-y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
\(\Leftrightarrow\frac{\left(x-y\right)\left(x+y\right)^2-\left(x-y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
\(\Leftrightarrow\frac{\left(x-y\right)\left(x^2+y^2+2xy-x^2-y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
\(\Leftrightarrow\frac{\left(x-y\right)2xy}{\left(x^2+y^2\right)\left(x+y\right)}>0\)( luôn đúng vì x>y>0)
\(\Rightarrow\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)
đpcm
\(\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^3-x^2y+y^3-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng với x;y dương)
Vậy BĐT đã cho đúng
Dấu "=" xảy ra khi \(x=y\)
Ta có \(\frac{x-y}{x+y}=\frac{x-y}{x+y}\times1=\frac{x-y}{x+y}\times\frac{x+y}{x+y}\)
\(=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\)
Vì x>y>0 \(\Rightarrow x^2+2xy+y^2>x^2+y^2\)
\(\Rightarrow\frac{x^2-y^2}{x^2+2xy+y^2}<\frac{x^2-y^2}{x^2+y^2}\)
\(\Rightarrow\frac{x-y}{x+y}<\frac{x^2-y^2}{x^2+y^2}\)
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow\frac{x^4+y^4+4x^2y^2}{x^2y^2}\ge\frac{3x^3y+3y^3x}{x^2y^2}\)
\(\Leftrightarrow x^4+y^4+4x^2y^2-3x^3y-3xy^3\ge0\)
\(\Leftrightarrow x^2\left(x^2-2xy+y^2\right)+y^2\left(x^2-2xy+y^2\right)-x^3y-xy^3+2x^2y^2\ge0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x^2-2xy+y^2\right)-xy\left(x^2+y^2-2xy\right)\ge0\Leftrightarrow\left(x^2-xy+y^2\right)\left(x-y\right)^2\ge0\)(đúng)
\(\Rightarrowđpcm."="\Leftrightarrow x=y\)
a, Áp dụng bđt cosi ta có :
2xy.(x^2+y^2) < = (2xy+x^2+y^2)^2/4 = (x+y)^4/4 = 2^4/4 = 4
<=> xy.(x^2+y^2) < = 2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
Vậy ............
Tk mk nha
b, Có : x.y < = (x+y)^2/4 = 2^2/4 = 1
<=> 2xy < = 2
Ta có : 1/x^2+y^2 + 1/xy = 1/x^2+y^2 + 1/2xy + 1/2xy >= \(\frac{9}{x^2+y^2+2xy+2xy}\)
= \(\frac{9}{\left(x+y\right)^2+2xy}\)
< = \(\frac{9}{2^2+2}\)= 3/2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
\(\left(x+y\right)^2=x^2+y^2+2xy>x^2+y^2\)
\(\frac{1}{\left(x+y\right)^2}<\frac{1}{x^2+y^2}\)
\(\frac{x-y}{\left(x+y\right)^2}<\frac{x-y}{x^2+y^2};vì:x-y>0\)nhân 2 vế với x+y
\(\frac{x-y}{x+y}<\frac{\left(x-y\right)\left(x+y\right)}{x^2+y^2};vì:x+y>0\)
Do \(x>y>0\) nên \(x+y\ne0\).Theo tính chất cơ bản của phân thức ta có :
\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\) \(\left(1\right).\)
Mặt khác , do \(x,y>0\) nên \(x^2+2xy+y^2>x^2+y^2\)
Vậy \(\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+y^2}\) \(\left(2\right).\)
Từ \(\left(1\right),\left(2\right)\) \(\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\).