\(P=\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

Ta có:

\(P=\frac{1}{x+y}+\frac{xy+x+y}{x}+\frac{xy+x+y}{y}=\frac{1}{x+y}+1+\frac{y}{x}+y+1+\frac{x}{y}+x\)

\(=\frac{1}{x+y}+\left(x+y\right)+2+\left(\frac{x}{y}+\frac{y}{x}\right)\ge2+2+2=6\)

DẤU BẰNG XẢY RA:\(\Leftrightarrow x=y=\sqrt{2}-1\)

1 tháng 6 2019

em viết nhầm đề nha.M = \(\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)mới đúng

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

15 tháng 2 2017

Đặt xy = a .

Ta có x + y = 1  => x^3 + y^3 = 1 - 3xy ( mũ 3 hai vế ) 

* Ta có a = xy \(\le\) \(\frac{\left(x+y\right)^2}{4}\) = \(\frac{1}{4}\) 
=> P = \(\frac{1}{1-3xy}\)+\(\frac{1}{xy}\)= \(\frac{1-2a}{a-3a^2}\)

Để tìm min P thì ta tìm max \(\frac{1}{P}\)= Q <=> Q =  \(\frac{a-3a^2}{1-2a}\)

  Đặt A=(a-3a^2 )/(1-2a)
<=> A-2Aa=a-3a^2
<=> 3a^2 -a(1+2A)+A=0
Giải delta >=0 là 1 biểu thức theo A
từ đó tìm được min và max A