\(x,y>0\) và \(x+y=1\) . Tìm \(Mi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Giải:

Có:

\(P=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\)

\(\left(x+\dfrac{1}{x}\right)^2\ge0,\forall x\)\(\left(y+\dfrac{1}{y}\right)^2\ge0,\forall y\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge0;\forall x,y\)

\(\Rightarrow Min_P=0\)

Chúc bạn học tốt!ok

8 tháng 6 2017

Áp dụng BĐT \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\) và BĐT \(xy\le\dfrac{1}{4}\left(x+y\right)^2\), ta có:

\(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\)

\(\ge\dfrac{1}{2}\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2\)\(=\dfrac{1}{2}\left(1+\dfrac{x+y}{xy}\right)^2\)

\(\ge\dfrac{1}{2}\left(1+\dfrac{1}{\dfrac{1}{4}\left(x+y\right)^2}\right)^2=\dfrac{25}{2}\left(x+y=1\right)\)

Dấu "=" xảy ra khi x = y = 0,5

13 tháng 6 2017

Ta có: \(\left(x+z\right)\left(y+z\right)=1\)

\(\Rightarrow\left(x+z\right)^2\left(y+z\right)^2=1\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x+z\right)^2\left(y+z\right)^2}{\left(y+z\right)^2}+\dfrac{\left(x+z\right)^2\left(y+z\right)^2}{\left(z+x\right)^2}\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z\right)^2+\left(y+z\right)^2\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z\right)^2-2\left(x+z\right)\left(y+z\right)+\left(y+z\right)^2+2\) (Vì: (x+z)(y+z)=1 =>2(x+z)(y+z)=2 )

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z-y-z\right)^2+2\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\)

Áp dụng bất đẳng thức Cauchy, ta có :

\(\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2\ge2\sqrt{\dfrac{1}{\left(x-y\right)^2}\cdot\left(x-y\right)^2}=2\cdot1=2\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\ge2+2=4\)

Vậy \(MinP=4\) khi \(x-y=1\); \(y+z=\dfrac{\sqrt{5}-1}{2}\); \(x+z=\dfrac{2}{\sqrt{5}-1}\)

Bài 1: Thực hiện phép tính a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\) b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\) c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\) d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\) e,...
Đọc tiếp

Bài 1: Thực hiện phép tính

a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\)

b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\)

c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\)

d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)

e, \(\dfrac{x^3}{x-1}\)-\(\dfrac{x^2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{1}{x+1}\)

f, \(\dfrac{x^3+x^2-2x-20}{x^2-4}\)-\(\dfrac{5}{x+2}\)+\(\dfrac{3}{x-2}\)

g, \(\left\{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}\right\}\).\(\left\{\dfrac{x^2+y^2}{2xy}\right\}\).\(\dfrac{xy}{x^2+y^2}\)

h, \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

i, \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

k, \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left\{\dfrac{x^2}{y}-\dfrac{y^2}{x}\right\}\right]\):\(\dfrac{x-y}{x}\)

Bài 2: Rút gọn các phân thức:

a, \(\dfrac{25x^2-20x+4}{25x^2-4}\)

b, \(\dfrac{5x^2+10xy+5y^2}{3x^3+3y^3}\)

c, \(\dfrac{x^2-1}{x^3-x^2-x+1}\)

d, \(\dfrac{x^3+x^2-4x-4}{x^4-16}\)

e, \(\dfrac{4x^4-20x^3+13x^2+30x+9}{\left(4x^2-1\right)^2}\)

Bài 3: Rút gọn rồi tính giá trị các biểu thức:

a, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\) với a = 4, b = -5, c = 6

b, \(\dfrac{16x^2-40xy}{8x^2-24xy}\) với \(\dfrac{x}{y}\) = \(\dfrac{10}{3}\)

c, \(\dfrac{\dfrac{x^2+xy+y^2}{x+y}-\dfrac{x^2-xy+y^2}{x-y}}{x-y-\dfrac{x^2}{x+y}}\) với x = 9, y = 10

Bài 4: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên:

a, \(\dfrac{x^3-x^2+2}{x-1}\)

b, \(\dfrac{x^3-2x^2+4}{x-2}\)

c, \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

d, \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)

e, \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)

2
8 tháng 12 2017

Giúp mình nhé mọi người ! leuleu

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=x-1\)

\(b.\)

\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)

\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2y}{\left(x-y\right)}\)

Tương tự các câu còn lại

26 tháng 7 2017

Các bạn ơi: khocroigianroi

10 tháng 6 2017

a )

Sử dụng Cô-si , ta có :

\(x+y\ge2\sqrt{xy}\) (1)

\(\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\) (2)

Nhân cả vế (1) vế (2) lại ta có :

\(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}=4\)

\(\LeftrightarrowĐPCM.\)

10 tháng 6 2017

Câu b trên mạng đầy :v

18 tháng 6 2017

\(A=\left(1-\dfrac{1}{x^2}\right)\left(1-\dfrac{1}{y^2}\right)=1+\dfrac{1}{x^2y^2}-\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương, ta có:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{2}{xy}\) (1)

\(x+y\ge2\sqrt{xy}\) (2)

TỪ (2) \(\Rightarrow\) \(\dfrac{1}{x^2y^2}\ge\dfrac{16}{\left(x+y\right)^4}\)\(\dfrac{2}{xy}\ge\dfrac{8}{\left(x+y\right)^2}\)

Mặt khác, theo đề \(x+y\le1\)

=> \(\dfrac{1}{x+y}\ge1\)

=> A \(\ge1+\dfrac{16}{\left(x+y\right)^4}+\dfrac{2}{xy}\) \(\ge1+\dfrac{16}{\left(x+y\right)^4}-\dfrac{8}{\left(x+y\right)^2}\)

\(=1+16-8=9\)

Dấu ''='' xảy ra khi x = y = 0,5

18 tháng 6 2017

Mình đánh nhầm, dòng 2 từ dưới lên phải là \(-\dfrac{2}{xy}\) nhá ! :))

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

a)

\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)

b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)

c)

\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)

d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)

f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)

g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)

\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)

6 tháng 9 2017

Ta có:

\(P=\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+5\)

\(=\dfrac{x^2}{y^2}-3\dfrac{x}{y}+\dfrac{9}{4}+\dfrac{y^2}{x^2}-3\dfrac{y}{x}+\dfrac{9}{4}+\dfrac{1}{2}\)

\(=\left(\dfrac{x}{y}-\dfrac{3}{2}\right)^2+\left(\dfrac{y}{x}-\dfrac{3}{2}\right)^2+\dfrac{1}{2}\)

Với \(x;y\ne0\) ta có:

\(\left(\dfrac{x}{y}-\dfrac{3}{2}\right)^2\ge0;\left(\dfrac{y}{x}-\dfrac{3}{2}\right)^2\ge0\)

\(\Rightarrow\left(\dfrac{x}{y}-\dfrac{3}{2}\right)^2+\left(\dfrac{y}{x}-\dfrac{3}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Vậy Min P = \(\dfrac{1}{2}\)

Để \(P=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{3}{2}=0\\\dfrac{y}{x}-\dfrac{3}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{3}{2}\\\dfrac{y}{x}=\dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow x=y=0\)