\(x^2+y^2=1\)

Tìm GTNN của \(\left(1+x\right...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 5 2019

\(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\Rightarrow\frac{1}{x+y}\ge\frac{\sqrt{2}}{2}\)

\(P=x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}+2\ge x+y+2\sqrt{\frac{xy}{xy}}+\frac{4}{x+y}+2\)

\(P\ge x+y+\frac{2}{x+y}+\frac{2}{x+y}+4\ge2\sqrt{\frac{2\left(x+y\right)}{x+y}}+2.\frac{\sqrt{2}}{2}+4=4+3\sqrt{2}\)

\(\Rightarrow P_{min}=4+3\sqrt{2}\) khi \(x=y=\frac{1}{\sqrt{2}}\)

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

12 tháng 4 2020

ta có

\(0\le\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\left(\forall x,y,z>0\right)\)

\(\Leftrightarrow2xy+2yz+2zx\le2\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)(1)

dấu  = xảy ra khi

\(x=y=z=0\)

theo giả thiết ta có

\(x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)\le18\)

\(\Leftrightarrow x^2+y^2+z^2\le18-\left(x+y+z\right)\left(2\right)\)

từ (1) zà (2) suy ra

\(\left(x+y+z\right)^2\le54-3\left(x+y+z\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-54\le0\)

\(\Leftrightarrow\left(x+y+z-6\right)\left(x+y+z+9\right)\le0\)

\(\Leftrightarrow0< x+y+z\le6\left(do\left(x+y+z>0;9>0\right)\right)\)

áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có

\(P=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\ge\frac{9}{2\left(x+y+z\right)+3}\ge\frac{9}{2.6+3}=\frac{3}{5}\)

Dấu = xảy ra khi zà chỉ khi

\(\hept{\begin{cases}x+y+1=y+z+1=z+x+1\\x+y+z=6\end{cases}=>x=y=z=2}\)

zậy MinP= 3/5 khi x=y=z=2

12 tháng 4 2020

Ta có : x(x + 1) + y (y+1 ) + z(z + 1) \(\le18\)

<=> x+ y+ z2 + ( x + y + z ) \(\le18\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

=> 54 \(\ge\)( x + y+z)2 + 3(x + y + z) 

<=> -9 \(\le\)x + y + z \(\le\)6

=> 0 \(\le\)x+y+z \(\le\)

\(\frac{1}{x+y+1}+\frac{x+y+1}{25}\ge\frac{2}{5}\)

\(\frac{1}{y+z+1}+\frac{y+z+1}{25}\ge\frac{2}{5}\)

\(\frac{1}{z+x+1}+\frac{z+x+1}{25}\ge\frac{2}{5}\)

=> \(P+\frac{2\left(x+y+z\right)+3}{25}\ge\frac{6}{5}\)

=> P \(\ge\frac{27}{25}-\frac{2}{25}\left(x+y+z\right)\ge\frac{15}{25}=\frac{3}{5}\)

Dấu " =" xảy ra khi :

\(\hept{\begin{cases}x=y=z>0;x+y+z=6\\\left(x+y+1\right)^2=\left(y+z+1\right)^2=\left(z+x+1\right)^2=25\end{cases}\Leftrightarrow x=y=z=2}\)

Vậy GTNN của P là \(\frac{3}{5}\)khi x = y =z =2

5 tháng 8 2017

 \(P=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\) Nhân bung ra ghép cặp ,dùng cosy 

\(P=1+\frac{1}{y}+x+\frac{x}{y}+1+\frac{1}{x}+y+\frac{y}{x}\)

\(P=2+\left(\frac{1}{y}+\frac{1}{x}\right)+\left(x+y\right)+\left(\frac{x}{y}+\frac{y}{x}\right)\ge2+2\sqrt{\frac{1}{xy}}+2\sqrt{xy}+2\sqrt{\frac{xy}{ỹx}}.\) \(P=4+2\left(\sqrt{\frac{1}{xy}}\sqrt{xy}\right)\ge4+4\sqrt{\frac{xy}{xy}}=8.\). Dấu bằng trong các bất đẳng thức trên xẩy ra khi x = y , vì x2 + y2 = 1 và x , y dương nên :        \(x=y=\frac{\sqrt{2}}{2}\) Khi đó P đạt giá trị nhỏ nhất Pmin = 8

5 tháng 8 2017

Đính chính : Dòng thứ 4 từ trên xuông trong bài giải, viết đúng là            \(P=4+2\left(\sqrt{xy}+\sqrt{\frac{1}{xy}}\right)\)

28 tháng 8 2020

Bài làm:

Ta có: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+2+\frac{1}{x^2y^2}\)

\(=\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}+2\)

Mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow x^2y^2\le\frac{1}{16}\)

Thay vào ta tính được:

\(M\ge2\sqrt{x^2y^2\cdot\frac{1}{256x^2y^2}}+\frac{255}{256\cdot\frac{1}{16}}+2\)

\(=\frac{1}{8}+\frac{255}{16}+2=\frac{289}{16}\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

Vậy \(Min_M=\frac{289}{16}\Leftrightarrow x=y=\frac{1}{2}\)

Đánh máy xong hết lại bấm hủy-.-