\(\frac{x+y}{x-y}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2x2+2y2=5xy

<=>2x2-5xy+2y2=0

<=>(2x2-4xy)-(xy-2y2)=0

<=>2x(x-2y)-y(x-2y)=0

<=>(x-2y).(2x-y)=0

<=> (x-2y)=0 hoặc 2x-y=0

Nếu x-2y=0 =>x=2y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{2y+y}{2y-y}\)=\(\frac{3y}{y}\)=3

Nếu 2x-y=0 =>2x=y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{x+2x}{x-2x}\)=\(\frac{3x}{-1x}\)= -3

7 tháng 3 2020

2x^2 + 2y^2 = 5xy

<=> 2x^2 + 2y^2 - 5xy = 0

<=> 2x^2  - 4xy + 2y^2 - xy  = 0

<=> 2x(x - 2y) - y(x - 2y) = 0

<=> (2x - y)(x - 2y) = 0

<=> 2x = y hoặc x = 2y

thay vào là xong

2 tháng 1 2017

2x2+2y2=5xy <=> 2(x+y)2=9xy => x+y=\(\sqrt{\frac{9}{2}xy}\)

Và: 2(x-y)2=xy => x-y=\(\sqrt{\frac{1}{2}xy}\). Thay vào K ta được:

K=\(\frac{\sqrt{\frac{9}{2}xy}}{\sqrt{\frac{1}{2}xy}}=\sqrt{9}\)=3

29 tháng 11 2018

\(x^2+3y^2=4xy\Leftrightarrow x^2-xy+3y^2-3xy=0\)

\(\Leftrightarrow x\left(x-y\right)-3y\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)

Do x>y>0 => x-y>0 => \(x-3y=0\Leftrightarrow x=3y\) Thay vào A

\(\Rightarrow A=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)

6 tháng 4 2017

Ta có \(x^2+3y^2=4xy\)
\(\Leftrightarrow x^2-xy-3xy+3y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)
Vì x>y nên  \(x-y\ne0\)\(\Rightarrow x-3y=0\Rightarrow x=3y\)
A= \(\frac{2x+5y}{x-2y}=\frac{11y}{y}=11\)

7 tháng 4 2017

Thank you very much

11 tháng 7 2017

Giải:

Ta có: \(x^2+3y^2=4xy\)

\(\Leftrightarrow x^2-xy-3xy+3y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\Leftrightarrow\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)

\(x>y>0\Leftrightarrow x-y>0\)

Do đó \(x-3y=0\Leftrightarrow x=3y\)

Thay vào \(\Rightarrow A=\frac{2x+5y}{x-2y}=\frac{6y+5y}{3y-2y}=\frac{11y}{y}=11\)

26 tháng 10 2017

bn có viết nhầm 5xy thành 4xy ko

19 tháng 3 2018

Ta có :

\(2x^2+2y^2=5xy\)

\(\Rightarrow2x^2+2y^2-5xy=0\)

\(\Rightarrow\left(2x^2-4xy\right)+\left(2y^2-xy\right)=0\)

\(\Rightarrow2x\left(x-2y\right)+y\left(2y-x\right)=0\)

\(\Rightarrow\left(x-2y\right)\left(2x-y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2y=0\\2x-y=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2y\\2x=y\end{matrix}\right.\)

*) Với \(x=2y\) ta có:

\(M=\dfrac{2y+y}{2y-y}=\dfrac{3y}{y}=3\)

*) Với \(2x=y\) ta có:

\(M=\dfrac{x+2x}{x-2x}=\dfrac{3x}{-x}=-3\)

Vậy \(M=3\) hoặc \(M=-3\)