\(\ge\)18.tìm giá trị nhỏ nhất của

P=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 5 2019

Để bài sai, cho \(x\) cố định và y lớn vô hạn thì P sẽ có giá trị âm vô hạn nên không tồn tại GTNN của P, ví dụ bạn cho \(x=1\), \(y=1000000\) hoàn toàn thỏa mãn điều kiện \(x+2y\ge18\) và thay vào biểu thức P bạn sẽ thấy vấn đề.

Đề bài đúng phải là \(x+2y\le18\), khi đó:

\(P=\frac{9}{y}+\frac{18}{x}+\frac{x}{6}-\frac{5y}{12}+2018\)

\(P=\frac{18}{x}+\frac{x}{2}+\frac{9}{y}+\frac{y}{4}-\frac{1}{3}\left(x+2y\right)+2018\)

\(P\ge2\sqrt{\frac{18x}{2x}}+2\sqrt{\frac{9y}{4y}}-\frac{1}{3}.18+2018=2021\)

\(\Rightarrow P_{min}=2021\) khi \(x=y=6\)

\(P=\frac{9}{y}+\frac{18}{x}+\frac{x}{6}-\frac{5y}{12}+2018=\left(\frac{18}{x}+\frac{x}{2}\right)+\left(\frac{9}{y}+\frac{y}{4}\right)-\frac{x}{3}-\frac{2y}{3}+2018\)

Lập luận : Áp dụng BTĐ Cô si cho : \(\frac{18}{x};\frac{x}{2}>0\)(với x  > 0):

\(\frac{18}{x}+\frac{x}{2}\ge2\sqrt{\frac{18}{x}.\frac{x}{2}}\Leftrightarrow\frac{18}{x}+\frac{x}{2}\ge6\)

Lập luận tương tự : Áp dụng BĐT Cô si cho : \(\frac{9}{y};\frac{y}{4}>0\)(y > 0 )

\(\frac{9}{y}+\frac{y}{4}\ge2\sqrt{\frac{9}{y}.\frac{y}{4}}\Leftrightarrow\frac{9}{y}+\frac{y}{4}\ge3\)

Và \(\frac{x}{3}-\frac{2y}{3}=\frac{x+2y}{3}\ge\frac{18}{3}\)(Do x + 2y \(\le\)18)

\(\Rightarrow P=\left(\frac{18}{x}+\frac{x}{2}\right)+\left(\frac{9}{y}+\frac{y}{4}\right)-\frac{x}{3}-\frac{2y}{3}+2018\ge6-3-\frac{18}{3}+2018=2021\)

Vậy \(P=2021\)Khi và chỉ khi \(\hept{\begin{cases}\frac{18}{x}=\frac{x}{2};\frac{9}{y}=\frac{y}{4}\\x+2y< 18;x,y>0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=6\end{cases}}\)

NV
25 tháng 2 2020

\(P=\frac{18}{x}+\frac{9}{y}+\frac{x}{6}-\frac{5y}{12}+2018\)

\(P=\frac{27}{2x}+\frac{3x}{8}+\frac{9}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\right)-\frac{5}{24}\left(x+2y\right)+2018\)

\(P\ge2\sqrt{\frac{27.3x}{16x}}+\frac{9}{2}.\frac{9}{x+2y}-\frac{5}{24}.18+2018\)

\(P\ge\frac{9}{2}+\frac{9}{2}.\frac{9}{18}-\frac{15}{4}+2018=2021\)

Dấu "=" xảy ra khi \(x=y=6\)

NV
15 tháng 4 2019

a/ \(\frac{18}{x}+\frac{x}{2}\ge2\sqrt{\frac{18}{x}.\frac{x}{2}}=6\) (đpcm)

Dấu "=" xảy ra khi \(\frac{18}{x}=\frac{x}{2}\Rightarrow x=6\)

b/

\(P=\frac{9}{y}+\frac{18}{x}+\frac{x}{6}-\frac{5y}{12}+2018\)

\(P=\frac{9}{y}+\frac{y}{4}+\frac{18}{x}+\frac{x}{2}-\frac{1}{3}\left(x+2y\right)+2018\)

\(P\ge2\sqrt{\frac{9}{y}.\frac{y}{4}}+2\sqrt{\frac{18}{x}.\frac{x}{2}}-\frac{1}{3}.18+2018\)

\(P\ge2021\)

\(\Rightarrow P_{min}=2021\) khi \(x=y=6\)

8 tháng 11 2019

Câu hỏi của Kiều Trang - Toán lớp 9 - Học toán với OnlineMath

3 tháng 10 2017

mình làm ra rồi khỏi cần giúp nữa

31 tháng 5 2017

ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)

Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)

\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla