\(\sqrt{x}(\sqrt{x}+\sqrt{y})=3\sqrt{y}\left( \sqrt{x}+5\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

Ta có :\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)

\(\Leftrightarrow x+\sqrt{xy}-3\sqrt{xy}-15y=0\)

\(\Leftrightarrow x-2\sqrt{xy}+y-16y=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}-4\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+4\sqrt{y}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-5\sqrt{y}=0\\\sqrt{x}+3\sqrt{y}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=5\sqrt{y}\\\sqrt{x}=-3\sqrt{y}\end{cases}}\)

\(\Leftrightarrow\sqrt{x}=5\sqrt{y}\)(do x,y>0)

\(\Leftrightarrow x=25y\)(*)

Thay (*) vào biểu thức E ta được: \(E=\frac{2.25y+\sqrt{25y.y}+3y}{25y+\sqrt{25y.y}-y}=\frac{50y+5y+3y}{25y+5y-y}=\frac{58y}{29y}=2\)

Vậy giá trị của biểu thức E là 2.

25 tháng 8 2021

ta có:\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\Leftrightarrow x-2\sqrt{xy}-3y-15y=0\Leftrightarrow\)

\(\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\Leftrightarrow\left(\sqrt{x}+3\sqrt{y}\right)\left(\sqrt{x}-5\sqrt{y}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+3\sqrt{y}=0\\\sqrt{x}-5\sqrt{y}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-3\sqrt{y}\left(loai\left(vi-x,y>0\right)\right)\\\sqrt{x}=5\sqrt{y}\end{cases}}}\)

thay \(\sqrt{x}=5\sqrt{y}\) vào E ta có:

\(E=\frac{2\left(5\sqrt{y}\right)^2+5\sqrt{y.y}+3y}{\left(\sqrt{5y}\right)^2+5\sqrt{y.y}-y}=\frac{y\left(50+5+3\right)}{y\left(25+5-1\right)}=2\)

vậy E =2

25 tháng 8 2021

2k6 thì dạng này EZ quá còn gì:)

\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)

\(\Leftrightarrow x+\sqrt{xy}-3\sqrt{xy}-15y=0\)

\(\Leftrightarrow x-2\sqrt{xy}-15y=0\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-5\sqrt{y}=0\\\sqrt{x}+3\sqrt{y}=0\end{cases}}\Leftrightarrow\sqrt{x}=5\sqrt{y}\Leftrightarrow x=25y\)

Khi đó : \(E=\frac{2x+\sqrt{xy}+3y}{x+\sqrt{xy}-y}=\frac{50y+5y+3y}{25y+5y-y}=\frac{58y}{29y}=2\)

(3*x-1)*y+2*căn bậc hai(x)*y+2*x

12 tháng 9 2017

ĐKXĐ : x;y > 0

\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)

\(\Leftrightarrow x+\sqrt{xy}=3\sqrt{xy}+15y\)

\(\Leftrightarrow x=2\sqrt{xy}+15y\)

\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)-16y=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)

Mà theo đk x;y > 0 nên \(\sqrt{x}+3\sqrt{y}>0\) Do đó \(\sqrt{x}-5\sqrt{y}=0\Rightarrow\sqrt{x}=5\sqrt{y}\Rightarrow x=25y\)

Thay vào C ta được :

\(C=\frac{2.25y+\sqrt{25y.y}+3y}{25y+\sqrt{25y.y}-y}=\frac{50y+5y+3y}{25y+5y-y}=2\)

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

31 tháng 5 2017

AM-GM cho cái gt =>x=y=z=1 thay vào

1 tháng 6 2017

nhầm r bác

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

27 tháng 10 2019

a.\(DK:x,y>0\)

Ta co:

\(A=\frac{x+y+2\sqrt{xy}}{xy}.\frac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

b.

Ta lai co:

\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}}{4}=1\)

Dau '=' xay ra khi \(x=y=4\)

Vay \(A_{min}=1\)khi \(x=y=4\)