Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x+y+z=0\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=-z^3\)
\(\Leftrightarrow x^3+3xy\left(x+y\right)+y^3=-z^3\)
\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)
\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)\)
\(\Leftrightarrow x^3+y^3+z^3=3xyz\)
x + y - z =0 --> x + y = z
Đặt : A = x3 + y3 - z3
Ta có : A= x3 + y3 - z3
A= ( x + y)3 - 3xy(x + y) - z3
A = ( x + y - z).[( x+y)2 + ( x+ y).z + z2] - 3xy(x+y)
Thay x + y = z vào A ta có :
A = ( z - z).( z2 + z.z + z2 ) - 3xyz
A = 0.( z2 + z.z + z2 ) - 3xyz
A= -3xyz ( đpcm )
x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz
= (x+y)^3 + z^3 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z)
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy]
=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
=1/2(x+y+z)(x^2-2xy+y^2+y^2-2yz+z^2+x^2-2xz+z^2)
=1/2(x+y+z)[(x-y)^2+(y-z)^2+(x-z)^2]
mà x^3 + y^3 + z^3 - 3xyz=0
<=> x+y+z=0
Vậy ...
Chúc bạn học tốt .
hoặc (x-y)^2+(y-z)^2+(x-z)^2 =0 mà (x-y)^2,(y-z)^2,(x-z)^2 >=0 mọi x,y,z
=> x-y=y-z=x-z=0 => x=y=z
Bài 1:
Ta có:\(x^2+xy+y^2+1\)
\(=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)
\(=\left(x^2+\dfrac{1}{2}xy\right)+\left(\dfrac{1}{2}xy+\dfrac{1}{4}y^2\right)+\dfrac{3}{4}y^2+1\)
\(=x.\left(x+\dfrac{1}{2}y\right)+\dfrac{1}{2}y.\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2+1\)
\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1>0\)
Hay \(x^2+xy+y^2+1>0\) (đpcm)
Chúc bạn học tốt!!!
\(x+y-z=0\)
\(\Leftrightarrow x+y=z\)
Lập phương 2 vế ta có:
\(\left(x+y\right)^3=z^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=z^3\)
\(\Leftrightarrow x^3+y^3-z^3=-3x^2y-3xy^2\)
\(\Leftrightarrow x^3+y^3-z^3=-3xy\left(x+y\right)\)
Thay \(x+y=z\) vào biểu thức ta được
\(\Leftrightarrow x^3+y^3-z^3=-3xyz\)(đpcm)