Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\) (áp dụng svacxo)
Áp dụng bđt phụ \(a^2+b^2+c^2\ge ab+bc+ca\)
=>\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2+y^2+z^2=1\\x=y=z\end{cases}\Leftrightarrow x=y=z=\sqrt{\frac{1}{3}}}\)
Cách 2:
\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)
Tương tự hai bđt còn lại , cộng theo vế:
\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge x^2+y^2+z^2=1\)(đpcm)
Cách 3:
\(\frac{x^3}{y}+\frac{x^3}{y}+y^2\ge3\sqrt[3]{\frac{x^3}{y}.\frac{x^3}{y}.y^2}=3x^2\)
Hay \(\frac{2x^3}{y}\ge3x^2-y^2\)
Tương tự 2 BĐT còn lại rồi cộng theo vế rồi chia cho 2 thu được đpcm
Cách 4:
\(\frac{x^3}{y}+\frac{x^3}{y}+xy+xy\ge4\sqrt[4]{x^8}=4x^2\)
Hay \(\frac{2x^3}{y}\ge4x^2-2xy\). Tương tự hai BĐT còn lại và cộng theo vế rồi làm nốt:v
P/s: Lời giải trên dùng kỹ thuật ghép cặp, một kĩ thuật rất gây ức chế cho em vì nhiều khi nghĩ không ra cần ghép với số nào:v
\(VT\le\sqrt{2\left(1+2x+1+2y\right)}=2\sqrt{1+x+y}\)
\(VT\le2\sqrt{1+\sqrt{2\left(x^2+y^2\right)}}=2\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=1\)
a) Có \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-y\right)^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy+y^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\left|x+y\right|\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{\pm\sqrt{2}}{2}\)
b) Áp dụng bđt Cô-si :
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)
Chứng minh tương tự rồi cộng vế ta có :
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
a) Theo BĐT Bunhiacopxki suy ra \(2=2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Do đó suy ra \(-\sqrt{2}\le x+y\le\sqrt{2}\)
b) Đặt \(\frac{1}{\sqrt{x}}=a;\frac{1}{\sqrt{y}}=b;\frac{1}{\sqrt{z}}=c\)
Cần chứng minh \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) (đúng)
Xảy ra đẳng thức khi a = b = c hay x = y = z
2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)
\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3
3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)
4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)