K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giải giúp mk vs mk sắp thi rùi!!! 1. a. Cho P=√x√xy+√x+3+√y√yz+√y+1+3√z√xz+3√z+3xxy+x+3+yyz+y+1+3zxz+3z+3 và xyz =9. Tính √10P−110P−1 b. Cho x,y,z >0 thỏa mãn: x+y+z + √xyzxyz =4 . Tính B= √x(4−y)(4−z)+√y(4−z)(4−x)+√z(4−x(4−y))x(4−y)(4−z)+y(4−z)(4−x)+z(4−x(4−y)) 2. a. giải phương trình x2(x+2)2+3=3x2−6xx2(x+2)2+3=3x2−6x b. {x2+y2+xy+1=2xx(x+y)2+x−2=2y2{x2+y2+xy+1=2xx(x+y)2+x−2=2y2 3. a.Tìm tất cả các...
Đọc tiếp

giải giúp mk vs mk sắp thi rùi!!!

1. a. Cho P=xxy+x+3+yyz+y+1+3zxz+3z+3xxy+x+3+yyz+y+1+3zxz+3z+3 và xyz =9.

Tính 10P110P−1

b. Cho x,y,z >0 thỏa mãn: x+y+z + xyzxyz =4 .

Tính B= x(4y)(4z)+y(4z)(4x)+z(4x(4y))x(4−y)(4−z)+y(4−z)(4−x)+z(4−x(4−y))

2. a. giải phương trình x2(x+2)2+3=3x26xx2(x+2)2+3=3x2−6x

b. {x2+y2+xy+1=2xx(x+y)2+x2=2y2{x2+y2+xy+1=2xx(x+y)2+x−2=2y2

3. a.Tìm tất cả các nghiệm nguyên của phương trình x2+x+2y2+y=2xy2+xy+3x2+x+2y2+y=2xy2+xy+3

b. CMR: a31+a32+a33+....+a3na13+a23+a33+....+an3 chia hết cho 3 biết a1,a2,a3,...,ana1,a2,a3,...,an là các chữ số của 2019201820192018

4. Cho tam giác MNP có 3 góc M, N, P nhọn, nội tiếp đường tròn tâm O bán kính R. Gọi Q là trung điểm của NP và các đường cao MD, NE, PF của tam giác MNP cắt nhau tại H.

a. MH =2OQ

b. Nếu MN+MP = 2NP thì sin N+ sin P = 2sinM

c. ME.FH +MF .HE = R22R22 biết NP = R2R2

5. Cho a,b,c dương thỏa mãn 1ab+1bc+1ca=31ab+1bc+1ca=3 . Tìm GTNN của P= ab2a+b+bc2b+c+ca2c+a

0
8 tháng 9 2017

a - 3/2a

24 tháng 7 2018

Đề vậy làm sao hiểu được đây bạn?

24 tháng 7 2018

\(2x+8\sqrt{x}-2=2\left(x+4\sqrt{x}-1\right)=2\left(x+4\sqrt{x}+4-5\right)=2\left(\sqrt{x}+2\right)^2-10\)\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\left(\sqrt{x}+2\right)^2\ge4\Rightarrow2\left(\sqrt{x}+2\right)^2\ge8\Rightarrow2\left(\sqrt{x}+2\right)^2-10\ge-2\)Vậy biểu thức này có GTNN bằng -2 khi x=0

Bạn ghi lại đề đi bạn

Bài 1: 

a: \(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}=\dfrac{-\sqrt{x}-1}{\sqrt{x}}\)

b: Để \(P=\dfrac{-3}{2}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{3}{2}\)

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+2\)

hay x=4

Bài 2: 

a: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(\dfrac{BC}{\cot B+\cot C}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)=AH\)(đpcm)

21 tháng 8 2016
 1) trong tam giác ABD vuông tại A, đường cao AH tính AD 
dựa vào hệ thức 1/AH^2=1/AD^2+1/AB^2 
Trong tg ADC vuông tại D đường cao DH tính AC 
dựa vào hệ thức AD^2=AH*AC => HC 
2)Kẻ AE//BD (E thuộc CD) 
=> AE vg AC, AE=BD 
trong tg AEC vuông tại A đường cao AH tính được AH 
3)Đk: pt viết thành 
can(x-2)(x-3)+can(x+1)=can(x-2)+can(x-... 
<=>(can(x-3))(can(x-2)-can(x+1))-(can(... 
<=>(can(x-2)-can(x+1))(can(x-3)-1)=0 
<=> (can(x-2)-can(x+1))=0 (*) hoặc can(x-3)-1=0 (**) 
giải các pt trên :
(*)<=> can(x-2)=can(x+1) 
<=> x-2=x+1 vô nghiệm 
(**) <=> can(x-3)=1 
<=> x-3=1=>x=4 
4) pt viết thành:
 can(x^2+2x)=2can2 
bình phương 2 vế và chuyển vế 
x^2+2x-8=0 
<=> x^2 +4x-2x-8=0 
<=>x(x+4) -2(x+4)
<=>(x-2)(x+4)=0 
<=> x=2; x=-4