K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

Bài 1:

Với mọi số hữu tỉ ta luôn có: \(\left\{{}\begin{matrix}x\le\left|x\right|\\-x\le\left|x\right|\end{matrix}\right.\)\(\left\{{}\begin{matrix}y\le\left|y\right|\\-y\le\left|y\right|\end{matrix}\right.\)

Cộng từng đẳng thức lại \(\Rightarrow\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\-x-y\le\left|x\right|+\left|y\right|\end{matrix}\right.\)

Hay: \(\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\x+y\ge-\left(\left|x\right|+\left|y\right|\right)\end{matrix}\right.\)\(\Leftrightarrow-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu bằng xảy ra khi \(xy=0\)

Câu b tương tự nhé.

Bài 2:

Ta có:

\(A=\left|x-2001\right|+\left|x-1\right|=\left|2001-x\right|+\left|1-x\right|\ge\left|2001-x+x-1\right|=2000\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}2001-x\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow2001\ge x\ge1\)

Vậy \(_{min}A=2000\) khi \(2001\ge x\ge1\)

28 tháng 5 2017

Bài 2:

Ta có: \(A=\left|x-2001\right|+\left|x-1\right|=\left|2001-x\right|+\left|x-1\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:

\(A\ge\left|2001-x+x-1\right|=\left|2000\right|=2000\)

Dấu " = " khi \(\left\{{}\begin{matrix}2001-x\ge0\\x-1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2001\\x\ge1\end{matrix}\right.\)

Vậy \(MIN_A=2000\) khi \(1\le x\le2001\)


21 tháng 8 2017

a/ m+a/m b bé hơn a/m +b/m

\(\frac{a+a}{m}\)be hon\(\frac{a+b}{m}\)

\(\frac{2a}{m}\) bé hơn \(\frac{a+b}{m}\)

nhan 2ve với 1/2

2a / ​m  . 1/2 bé hơn a+b/m .1/2

a/m bé hơn a+b/m 

x bé hơn z[1]

cg 2ve voi b/m

a/m+b/m bé hơn b/m +b/m 

a+b/m be hon 2b/m 

nhan 2ve với 1/2

a+b/m .1/2 bé hôn 2b/m.1/2

a+b/2m bé hơn b/m

z bé hơn y [2]

từ 1 đến 2 xbe hơn z bé hơn y

5 tháng 8 2017

ttheo bai ra thi ; x-y>0 => x-y la so nguyÊn dưong nên x=y+q ( q la so nguyen duong)
=>. x>y 
b) theo bai thi x>y suy ra x-y la 1 so nguyen duong nen x-y>0 
  k cho mik nhoa~

5 tháng 8 2017

Đúng ko

\(x^2+y^2+1=xy-x-y\Leftrightarrow2x^2+2y^2+2=2xy-2x-2y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\Leftrightarrow x=y=-1\)

\(A=\frac{1}{xy}+2\left(x+y\right)=\frac{1}{\left(-1\right)\left(-1\right)}+2\left[\left(-1\right)+\left(-1\right)\right]=\frac{-7}{2}\)

21 tháng 8 2019

\(x< y\Leftrightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{2m}< \frac{b}{2m}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{2a}{2m}< \frac{a+b}{2m}\\\frac{a+b}{2m}< \frac{2b}{2m}\end{cases}}\)\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)

\(\Rightarrow x< z< y\)

22 tháng 8 2019

 Bạn ơi bạn Bùi Huyền ở trên kia làm đúng rồi nhé. Hôm nay mình làm cô giáo kiểm tra đúng rồi chắc chắn 100% luôn nhé nên không phải lo đâu

Hok tốt bn