Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :
Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).
Sao ko hiện làm lại :
\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8
a) ĐK \(x\ge1\)
với \(x\ge1\Rightarrow\hept{\begin{cases}\sqrt{x-1}\ge0\\\sqrt{5+x}\ge\sqrt{6}\end{cases}\Rightarrow\sqrt{x-1}+\sqrt{5+x}\ge\sqrt{6}}\)
dâu = xảy ra <=>x=1
b)Dặt ...=A
Ta có A=\(\frac{2}{9}x+\frac{1}{2x}+\frac{2}{9}y+\frac{1}{2y}+\frac{7}{9}\left(x+y\right)\)
Áp dụng BĐT cô-si, ta có \(\frac{2}{9}x+\frac{1}{2x}\ge\frac{2}{3}\)
tương tự có \(\frac{2}{9}y+\frac{1}{2y}\ge\frac{2}{3}\)
Mà \(x+y\ge3\Rightarrow\frac{7}{9}\left(x+y\right)\ge\frac{7}{3}\)
=>\(A\ge\frac{2}{3}+\frac{2}{3}+\frac{7}{3}=\frac{11}{3}\)
Dấu = xảy ra <=>\(x=y=\frac{3}{2}\)
^_^
\(\sqrt{x+2+2\sqrt{x+1}}+\sqrt{x+2-2\sqrt{ }x+1}=\frac{x+5}{2}\)\(\frac{x+5}{2}\)
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
Đặt \(\left\{{}\begin{matrix}x+\sqrt{1+x^2}=a>0\\y+\sqrt{1+y^2}=b>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{1+x^2}=a-x\\\sqrt{1+y^2}=b-y\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1+x^2=a^2-2ax+x^2\\1+y^2=b^2-2by+y^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{a^2-1}{2a}\\y=\frac{b^2-1}{2b}\end{matrix}\right.\)
Thay vào biểu thức điều kiện đề bài:
\(\left(\frac{a^2-1}{2a}+\sqrt{1+\left(\frac{b^2-1}{2b}\right)^2}\right)\left(\frac{b^2-1}{2b}+\sqrt{1+\left(\frac{a^2-1}{2a}\right)^2}\right)=1\)
\(\Leftrightarrow\left(\frac{a^2-1}{2a}+\sqrt{\left(\frac{b^2+1}{2b}\right)^2}\right)\left(\frac{b^2-1}{2b}+\sqrt{\left(\frac{a^2+1}{2a}\right)^2}\right)=1\)
\(\Leftrightarrow\left(\frac{a^2-1}{2a}+\frac{b^2+1}{2b}\right)\left(\frac{b^2-1}{2b}+\frac{a^2+1}{2a}\right)=1\)
Với chú ý rằng: \(1=\frac{4ab}{4ab}=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{4ab}\)
\(\Rightarrow\left[\frac{\left(a+b\right)}{2}-\left(\frac{1}{2a}-\frac{1}{2b}\right)\right]\left[\frac{a+b}{2}+\left(\frac{1}{2a}-\frac{1}{2b}\right)\right]=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{4ab}\)
\(\Leftrightarrow\left(a+b\right)^2-\left(\frac{1}{a}-\frac{1}{b}\right)^2=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{ab}\)
\(\Leftrightarrow\left(a+b\right)^2-\frac{\left(a-b\right)^2}{\left(ab\right)^2}=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\left(1-\frac{1}{ab}\right)+\frac{\left(a-b\right)^2}{ab}\left(1-\frac{1}{ab}\right)=0\)
\(\Leftrightarrow\left(1-\frac{1}{ab}\right)\left[\left(a+b\right)^2+\frac{\left(a-b\right)^2}{ab}\right]=0\)
\(\Leftrightarrow1-\frac{1}{ab}=0\)
\(\Leftrightarrow ab=1\) (đpcm)
\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)
\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)
\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)
\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)
\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé
\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)