Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)
b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)
c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\dfrac{\sqrt{3xy}}{xy}=\dfrac{\sqrt{3}}{\sqrt{xy}}\)
Tương tự \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\ge\dfrac{\sqrt{3}}{\sqrt{yz}};\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge\dfrac{\sqrt{3}}{\sqrt{xz}}\)
\(\Rightarrow VT\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\ge\sqrt{3}.\dfrac{3}{\sqrt[3]{xyz}}=3\sqrt{3}\)
Dấu "=" xảy ra khi x=y=z=1
\(xy+xz+yz=6xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=6\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{x}=a\\\frac{1}{y}=b\\\frac{1}{z}=c\end{matrix}\right.\) \(\Rightarrow a+b+c=6\)
\(T=\sum x\sqrt{\frac{x}{1+x^3}}=\sum\sqrt{\frac{x^3}{1+x^3}}=\sum\sqrt{\frac{1}{1+\frac{1}{x^3}}}=\sum\frac{1}{\sqrt{1+a^3}}=\sum\frac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\)
\(\Rightarrow T\ge\sum\frac{2}{a+1+a^2-a+1}=\sum\frac{2}{a^2+2}\)
Ta có đánh giá: \(\frac{2}{a^2+2}\ge\frac{7-2a}{9}\) với mọi \(0< a< 6\)
Thật vậy, \(\frac{2}{a^2+2}\ge\frac{7-2a}{9}\Leftrightarrow18-\left(a^2+2\right)\left(7-2a\right)\ge0\)
\(\Leftrightarrow2a^3-7a^2+4a+4\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\left(2a+1\right)\ge0\) luôn đúng với mọi \(0< a< 6\)
Tương tự ta có: \(\frac{2}{b^2+2}\ge\frac{7-2b}{9}\) ; \(\frac{2}{c^2+2}\ge\frac{7-2c}{9}\)
\(\Rightarrow T\ge\frac{21-2\left(a+b+c\right)}{9}=\frac{21-12}{9}=1\)
\(\Rightarrow T_{min}=1\) khi \(a=b=c=2\) hay \(x=y=z=\frac{1}{2}\)
bài 3:
a, đặt x12=y9=z5=kx12=y9=z5=k
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29
A/D tính chất dãy tỉ số bằng nhau ta có:
x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Áp dụng BĐT AM-GM ta có
x^3/1+y +1+y/4+1/2 >= 3 căn 3(x^3/8) =3x/2
Tương tự: y^3/1+z + 1+z/4 +1/2 >= 3z/2
z^3/1+x +1+x/4 + 1/2 >= 3z/2
=> P + x+y+z+3/4 +3/2 >= 3(x+y+z)/2
<=> P >= [5(x+y+z)-3]/4 -3/2
<=> P >= 5(x+y+z)/4 -9/4
Mặt khác x+y+z>=xy+yz+zx>=3
( bạn tự chứng minh nhé)
=> P>= 15/4 -9/4=3/2
=>P >=3/2
Dấu = xảy ra khi x=y=z=1
Nhớ tick cho mình nhé
Áp dụng BĐT AM-GM ta có
x^3/1+y +1+y/4+1/2 >= 3 căn 3(x^3/8) =3x/2
Tương tự: y^3/1+z + 1+z/4 +1/2 >= 3z/2
z^3/1+x +1+x/4 + 1/2 >= 3z/2
=> P + x+y+z+3/4 +3/2 >= 3(x+y+z)/2
<=> P >= [5(x+y+z)-3]/4 -3/2
<=> P >= 5(x+y+z)/4 -9/4
Mặt khác x+y+z>=xy+yz+zx>=3
( bạn tự chứng minh nhé)
=> P>= 15/4 -9/4=3/2
=>P >=3/2
Dấu = xảy ra khi x=y=z=1
Nhớ tick cho mình nhé
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y