\(x;y\) thỏa mãn : \(x^2+y^2-2x-4y< =0\). CMR:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

\(gt\Rightarrow x^2+y^2\le2\left(x+2y\right)\)

Áp dụng Bđt Bunhia

\(\left(x+2y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)\le5\cdot2\left(x+2y\right)\)

\(\Rightarrow x+2y\le10\)

Dpcm

 

 

22 tháng 5 2020

ko lam thi thoi chui cl ay!!!

22 tháng 5 2020

đù , chuyện giề đang xảy ra vậy man

25 tháng 10 2017

Theo gt: x+y≤ 2 (x + 2y) x+ y≤ 2(x + 2y)

Ta có: (x + 2y)≤ (12 + 22)(x+ y2) ≤ 5.2(x + 2y)(x + 2y)2 ≤ (1+ 22)(x2+y2) ≤ 5.2(x+2y)

⇒ x + 2y ≤ 10 ⇒ x + 2y ≤ 10 (đpcm)

14 tháng 8 2016

a/ \(\frac{y}{x}.\left(\sqrt{\frac{x^2}{y^4}}\right)=\frac{y}{x}.\frac{x}{y^2}=\frac{1}{y}\)

 

b/ \(2y^2.\sqrt{\frac{x^4}{4y^2}}=2y^2.\sqrt{\frac{\left(x^2\right)^2}{\left(-2y\right)^2}}=2y^2.\frac{x^2}{-2y}=-y.x^2\)

c/ \(5xy.\sqrt{\frac{25x^2}{y^6}}=5xy.\sqrt{\frac{\left(-5x\right)^2}{\left(y^3\right)^2}}=5xy.\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\)

d/\(0,2.x^3y^3.\sqrt{\frac{4^2}{\left(x^2y^4\right)^2}}=\frac{1}{5}.x^3y^3.\frac{4}{x^2y^4}=\frac{4x}{5y}\)

 

 

 

14 tháng 8 2016

Trần Việt Linh sai phần b,c,d r bn

Sửa lại:

b) 2y\(^2\).\(\sqrt{\frac{x^4}{4y^2}}\) với y<0

Ta có : 2y\(^2\).\(\sqrt{\frac{x^4}{4y^2}}\)=2y\(^2\).\(\frac{x^2}{\left|y\right|}\)

Vì y>0 nên |y| = -y.Ta có : 2y\(^2\).\(\frac{x^2}{2\left|y\right|}\)= -2y\(^2\).\(\frac{x^2}{2y}\) = -2x\(^2\)y

c) 5xy.\(\sqrt{\frac{25x^2}{y^6}}\) với x<0,y>0

Ta có :5xy\(\sqrt{\frac{25x^2}{y^6}}\)=5xy.\(\frac{5\left|x\right|}{y^3}\) ( y>0)

Vì x<0 nên |x| =-x .Ta có : 5xy.\(\frac{5\left|x\right|}{y^3}\)= -5xy.\(\frac{5x}{y^3}\) =\(\frac{-25x^2}{y^2}\)

d) 0,,2x\(^3\)y\(^3\).\(\sqrt{\frac{16}{x^4y^8}}\) với x#o,y#0

Ta có: 0,2x\(^3\)y\(^3\)\(\frac{4}{x^2y^4}\)=\(\frac{0,8x}{y}\) ( vì #0,y#0)

 

12 tháng 8 2017

Ta có:

\(x^2+x^2y^2-2y=0\)

\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\)(cái này chứng minh đơn giản b tự làm lấy nhé)

\(\Leftrightarrow-1\le x\le1\left(1\right)\)

Ta lại có:

\(x^3+2y^2-4y+3=0\)

\(\Leftrightarrow x^3=-1-2\left(y-1\right)^2\le-1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x=-1\)

\(\Rightarrow y=1\)

\(\Rightarrow x^2+y^2=1+1=2\)

1 tháng 5 2020

kdfjeuy;r;

30 tháng 5 2018

Ta có:

\(x^2+y^2-2xy+2x-4y+15=0\)

\(\Rightarrow\hept{\begin{cases}x^2-\left(2y-2\right)x+y^2-4y+15=0\\y^2-\left(2x+4\right)+x^2+2x+15=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\Delta'_x=\left(y-1\right)^2-\left(y^2-4y+15\right)\ge0\\\Delta'_y=\left(x+2\right)^2-\left(x^2+2x+15\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y\ge7\\x\ge\frac{11}{2}\end{cases}}\)

\(\Rightarrow4x^2+y^2\ge4.\left(\frac{11}{2}\right)^2+7^2=170\)

Dễ thấy dấu = không xảy ra nên 

\(\Rightarrow4x^2+y^2>170\)