\(-5\le3x+4y\le5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((x^2+y^2)(3^2+4^2)\geq (3x+4y)^2\)

\(\Leftrightarrow 3^2+4^2\geq (3x+4y)^2\)

\(\Leftrightarrow 25\geq (3x+4y)^2\)

\(\Leftrightarrow -5\leq 3x+4y\leq 5\)

Dấu bằng xảy ra khi \(\frac{x}{3}=\frac{y}{4}\). Kết hợp với \(x^2+y^2=1\Rightarrow (x,y)=\left(\frac{3}{5};\frac{4}{5}\right); \left(\frac{-3}{5};\frac{-4}{5}\right)\)

12 tháng 11 2017

Tks

15 tháng 10 2020

\(\sqrt{xy+2x+2y+4}+\sqrt{\left(2x+2\right)y}< =5\)

\(< =>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{\left(2x+2\right)y}< =5\)

\(< =>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =5\)

Áp dụng bất đẳng thức cauchy ta được :

\(\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =\frac{x+y+4}{2}+\frac{2y+x+1}{2}\)

\(=\frac{2x+3y+5}{2}=\frac{10}{2}=5\)

\(=>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =5\)

Vậy ta có điều cần phải chứng minh

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky ta có:

\((3x+4\sqrt{1-x^2})^2\leq (3^2+4^2)[x^2+(1-x^2)]\)

\(\Leftrightarrow (3x+4\sqrt{1-x^2})^2\leq 3^2+4^2=25\)

\(\Rightarrow -\sqrt{25}\leq 3x+4\sqrt{1-x^2}\leq \sqrt{25}\)

hay \(-5\leq 3x+4\sqrt{1-x^2}\leq 5\) (đpcm)

13 tháng 12 2019

Theo Bunhiacopski ta luôn có:

\(\left(x-y\right)^2=\left[1\cdot x+\left(-\frac{1}{2}\right)\cdot2y\right]^2\le\left(1^2+\frac{1}{4}\right)\left(x^2+4y^2\right)=\frac{5}{2}\)

\(\Rightarrow\left|x-y\right|\le\frac{\sqrt{5}}{2}\left(đpcm\right)\)

7 tháng 1 2020

Theo C-S:

\(x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}\)

\(\le\sqrt{\left(1-y^2+y^2\right)\left(1-x^2+x^2\right)}=1\)

Lại có \(3x+4y\le\sqrt{\left(x^2+y^2\right)\left(3^2+4^2\right)}\le\sqrt{5^2}=5\)

áp dụng cauchy ngược dấu là xong nhé bạn :>> mình ko đánh đc sorry bạn

22 tháng 3 2021

Áp dụng BĐT Bunhiacopxky:

\(\left(x^3+y^3\right)\left(x+y\right)\ge\left(x^2+y^2\right)^2\)

\(\Leftrightarrow2\left(x+y\right)\ge\left(x^2+y^2\right)^2\)

\(\Rightarrow4\left(x+y\right)^2\ge\left(x^2+y^2\right)^4\)  \(\left(1\right)\)

Áp dụng BĐT AM-GM: 

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) \(\Rightarrow8\left(x^2+y^2\right)\ge\left(x^2+y^2\right)^4\)

\(\Rightarrow8\ge\left(x^2+y^2\right)^3\)

\(\Rightarrow2\ge x^2+y^2\)hay \(x^2+y^2\le2\)

13 tháng 7 2021

Áp dụng bất đẳng thức Cô si cho ba số dương ta có    

        x^3+x^3+1\ge3\sqrt[3]{x^3.x^3.1}\Leftrightarrow2x^3+1\ge3x^2x3+x3+133x3.x3.12x3+13x2, đẳng thức xảy ra khi và chỉ khi x=1x=1.

Tương tự,  2y^3+1\ge3y^22y3+13y2. Cộng theo vế hai bất đẳng thức nhận được ta có

             2\left(x^3+y^3\right)+2\ge3\left(x^2+y^2\right)2(x3+y3)+23(x2+y2)

Sử dụng giả thiết  x^3+y^3=2x3+y3=2 suy ra đpcm. Đẳng thức xảy ra khi và chỉ khi      x=y=1x=y=