K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

Từ x+y=a x2+y2=b x3+y3=c

=>a3+2c=(x+y)3+2x3+2y3=x3+3x2y+3xy2+y3+2x3+2y3=3(x3+y3+x2y+xy2)(1)

3ab=3(x+y)(x2+y2)=3(x3+y3+x2y+xy2)(2)

Từ 1 và 2 =>a3+2c=3ab(ĐPCM)

28 tháng 7 2019

\(a^3-3ab+2c\)

\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3x^3-3x^2y-3xy^2-3y^3+2x^3+2y^3\)

\(=0\)

28 tháng 7 2019

Có: x + y = a <=> (x + y)3 = a3

                            3ab = 3(x + y)(x2 + y2)

                            2c = 2(x3 + y3)

Thay vào biểu thức ta được:

a3 - 3ab + 2c = (x + y)3 - 3(x + y)(x2 + y2) + 2(x3 + y3)

a3 - 3ab + 2c = x3 + y3 + 3x2y + 3xy2 - 3x3 - 3xy2 - 3x2y - 3y3 + 2x3 + 2y3

a3 - 3ab + 2c = 0 (đpcm)

10 tháng 10 2018

\(a^3=\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)

\(3ab=3\left(x+y\right)\left(x^2+y^2\right)=3\left(x^3+x^2y+xy^2+y^3\right)\)

\(2c=2x^3+2y^3\)

\(a^3-3ab+2c=\left(x^3+y^3-3x^2-3y^2+2x^3+2y^3\right)+3\left(x^2y-xy^2+xy^2-xy^2\right)=0\)

28 tháng 6 2018

bài 2 

Giải:x6+y6)-3(x4+y4)

 2(x6+y6)−3(x4+y4)2(x6+y6)−3(x4+y4)

⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4⇔2(x2+y2)(x4−x2y2+y4)−3x4−3y4

⇔2(x4−x2y2+y4)−3x4−3y4⇔2(x4−x2y2+y4)−3x4−3y4

⇔2x4−2x2y2+2y4−3x4−3y4⇔2x4−2x2y2+2y4−3x4−3y4

⇔−2x2y2−x4−y4⇔−2x2y2−x4−y4

⇔−(x4+2x2y2+y4)⇔−(x4+2x2y2+y4)

⇔−(x2+y2)2⇔−(x2+y2)2

⇔−1

28 tháng 6 2018

bài 1

bạn thay vào hết và tính ra là được 

\(\Leftrightarrow\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(\Leftrightarrow3x^3+3y^3+3xy\left(x+y\right)-3x^3-3y^3-3xy\left(x+y\right)=0\)(điều phải c/m)

29 tháng 4 2017

2,a A+4=4+(5x^2+6x+1)/x^2=(9x^2+6x+1)/x^2=(3x+1)^2/x^2 >/ 0 với mọi x

=>A >/ -4 =>minA=-4 , đẳng thức xảy ra khi x=-1/3 

2,b dễ c/m bđt : x^3+y^3 >/ (x+y)^3/4,khai triển hết ra còn 3(x-y)^2 >/ 0 ,đẳng thức xảy ra khi x=y

x^6+y^6=(x^2)^3+(y^2)^3 >/ (x^2+y^2)^3/4=1/4 ,đẳng thức xảy ra khi x=y=1/căn(2)

29 tháng 4 2017

2,c (a^3-3ab^2)^2=a^6-6a^4b^2+9a^2b^4=5^2=25

    (b^3-3a^2b)^2=b^6-6a^2b^4+9a^4b^2=10^2=100

Cộng theo vế đc a^6+b^6+3a^2b^4+3a^4b^2=(a^2+b^2)^3=25+100=125 =>S=a^2+b^2=5

Câu 2: 

\(A=2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)

\(=2\left[\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\right]-3\left[\left(x^2+y^2\right)^2-2x^2y^2\right]\)

\(=2\left(1-3x^2y^2\right)-3\left(1-2x^2y^2\right)\)

\(=2-6x^2y^2-3+6x^2y^2=-1\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2019

Lời giải:

Dựa vào các hằng đẳng thức đáng nhớ ta có:

\(a^3-3ab+2c=(x+y)^3-3(x+y)(x^2+y^2)+2(x^3+y^3)\)

\(=x^3+y^3+3x^2y+3xy^2-3(x^3+xy^2+x^2y+y^3)+2(x^3+y^3)\)

\(=(x^3-3x^3+2x^3)+(y^3-3y^3+2y^3)+(3x^2y-3x^2y)+(3xy^2-3xy^2)\)

\(=0\)

11 tháng 10 2018

a^3 - 3ab + 2c 
= (x + y)^3 - 3(x + y)(x^2 + y^2) + 2(x^3 + x^3) 
= x^3 + y^3 + 3xy(x + y) - 3(x + y)(x^2 + y^2) + 2(x^3 + y^3) 
= [x^3 + y^3 + 2(x^3 + y^3)] + [3xy(x + y) - 3(x + y)(x^2 + y^2)] 
= 3(x^3 + x^3) - 3(x + y)(x^2 - xy + y^2) 
= 3(x^3 + x^3) - 3(x^3 + y^3) 
= 0 

11 tháng 10 2018

 a^3 - 3ab + 2c

= (x + y)^3 - 3(x + y)(x^2 + y^2) + 2(x^3 + x^3)

= x^3 + y^3 + 3xy(x + y) - 3(x + y)(x^2 + y^2) + 2(x^3 + y^3)

= [x^3 + y^3 + 2(x^3 + y^3)] + [3xy(x + y) - 3(x + y)(x^2 + y^2)]

= 3(x^3 + x^3) - 3(x + y)(x^2 - xy + y^2)

= 3(x^3 + x^3) - 3(x^3 + y^3)

= 0

NV
29 tháng 2 2020

Hai BĐT đều có dấu "=" xảy ra

a/ \(\Leftrightarrow x^7-x^4y^3+y^7-x^3y^4\ge0\)

\(\Leftrightarrow x^4\left(x^3-y^3\right)-y^4\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^2+xy+y^2\right)\left(x-y\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y\)

b/ Áp dụng câu a:

\(VT\le\sum\frac{a^2b^2}{a^3b^3\left(a+b\right)+a^2b^2}=\sum\frac{1}{ab\left(a+b\right)+1}=\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)