K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2019

We have:

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y+3\right)^2=-y^2+1\)

\(\Rightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow-1\le x+y+3\le1\)

\(\Rightarrow2015\le x+y+2019\le2017\)

Sign '=' happen when \(x=-4;x=-2;y=0\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

22 tháng 7 2020

Đặt \(x^2=a;y^2=b\left(a,b\ge0\right)\)
Ta có

\(x^6+y^6=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=a^2-ab+b^2\)

\(\ge a^2-\frac{a^2+b^2}{2}+b^2=\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)

Vậy Min = 1/4 khi \(x=y=\frac{1}{\sqrt{2}}\)
Ta có

+)\(x^2+y^2=1\leftrightarrow\left(x+y\right)^2-2xy=1\)

+) Đặt x+y=S, xy = P, ta được: \(S^2-2P=1\)
+)\(x^6+y^6=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)=x^4-x^2y^2+y^4=\left(x^2+y^2\right)^2-3x^2y^2\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-3x^2y^2=\left(S^2-2P\right)^2-3P^2=S^4-4S^2P+4P^2-3P^2\)

\(=S^4-4S^2P+P^2=\left(2P+1\right)^2-4\left(2P+1\right)P+P^2\)

\(=4P^2+4P+1-8P^2-4P+P^2=-3P^2+1\le1\)

Dấu = xảy ra khi \(\hept{\begin{cases}P=0\\S=1\end{cases}}\), khi đó x=1, y=0 hoặc x=0, y=1

4 tháng 4 2021

\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=\frac{x-1}{x}\frac{y-1}{y}\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=\frac{xy-x-y+1}{xy}\left(1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}\right)\)

\(=\frac{-\left(x+y\right)+1}{xy}\left(\frac{xy+x+y+1}{xy}\right)=1+\frac{2}{xy}\)

 mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow1+\frac{2}{\frac{1}{4}}=9\)Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)