Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}.10=5\)
Vậy MIN P = 5 khi x = y = \(\frac{\sqrt{10}}{2}\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) , dấu đẳng thức xảy ra khi và chỉ khi a = b
Ta có : \(M=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\ge\frac{4}{\sqrt{1+x^2}+\sqrt{1+y^2}}\)
Mặt khác, theo bđt Bunhiacopxki : \(\left(1.\sqrt{1+x^2}+1.\sqrt{1+y^2}\right)^2\le\left(1^2+1^2\right)\left(2+x^2+y^2\right)\)
\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}\le\sqrt{20}=2\sqrt{5}\)
Do đó : \(M\ge\frac{4}{2\sqrt{5}}=\frac{2\sqrt{5}}{5}\). Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2+y^2=8\\\sqrt{1+x^2}=\sqrt{1+y^2}\end{cases}\Leftrightarrow}x=y=2\)(vì x,y >0)
Vậy \(MinM=\frac{2\sqrt{5}}{5}\Leftrightarrow x=y=2\)
Ta có y2 = 1 - x2
=> 1 - x2 \(\ge0\)
<=> \(-1\le x\le1\)
Kết hợp với điều kiện ban đầu ta được
\(0\le x\le1\)
P = \(\sqrt{1+2x}+\sqrt{1+2\sqrt{1-x^2}}\)
Hàm số này bị chặn 2 đầu nên ta xét x = 0 và x = 1 thì P = 1 + \(\sqrt{3}\)
Vậy GTNN là 1 + \(\sqrt{3}\)khi x = (0;1)
\(M=\sqrt{3}xy+y^2=\frac{1}{2}\left(x^2+2\sqrt{3}xy+3y^2\right)-\frac{1}{2}x^2-\frac{1}{2}y^2\)
\(=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}\).
Nên GTNN của M là \(-\frac{1}{2}\) đạt được khi \(x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}\)
+,Với \(y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}\)
+,Với \(y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}\)
Ta lại có:\(M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}\)
Nên GTLN của M là \(\frac{3}{2}\) đạt được khi \(\sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}\)
+,Với \(x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}\)
+,Với \(x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}\)
M=3xy+y2=21(x2+23xy+3y2)−21x2−21y2
=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}=21(x+3y)2−21≥−21.
Nên GTNN của M là -\frac{1}{2}−21 đạt được khi x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}x=−3y⇒x2=3y2⇒4y2=1⇒y=±21
+,Với y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}y=21⇒x=−23
+,Với y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}y=−21⇒x=23
Ta lại có:M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}M=3xy+y2≤23x2+y2+y2=23x2+3y2=23
Nên GTLN của M là \frac{3}{2}23 đạt được khi \sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}3x=y⇒3x2=y2⇒4x2=1⇒x=±21
+,Với x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}x=21⇒y=23
+,Với x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}x=−21⇒y=−23
x2 +y2 >=2xy =>x 2 + y2 + y2+x2 >=(x+y)2 . Dấu bằng xảy ra khi x=y
=>2(x2 + y2)>=(x+y)2
thay x+y=\(\sqrt{10}\)
ta có :
2P>=10 => P>=5 dấu băng xảy ra <=>x=y=\(\sqrt{2.5}\)
Áp dụng BĐT Bunhiacopxki 2(a2+b2)\(\ge\)(a+b)2 vào 2 số dương x,y ta có:
2(x2+y2)\(\ge\)(x+y)2=(\(\sqrt{10}\))2=10(x+y=\(\sqrt{10}\))
=>P=x2+y2\(\ge\)5
Dấu "=" xảy ra khi:x=y
mà x+y=\(\sqrt{10}\)=>x=y=\(\dfrac{\sqrt{10}}{2}\)