Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho y ở đề bài làm gì trong khi biểu thức ở vế trái bên dưới ko có y?
\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)
\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)
\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)
Dấu " = " xảy ra khi \(x=\frac{1}{3}\)
\(VT=27x^2-36x+12+\frac{8x}{y}\)
\(=\frac{8x}{1-x}+18x\left(1-x\right)+45x^2-54x+12\)
\(\ge45x^2-54x+12+24x\)
\(=45x^2-30x+12=5\left(9x^2-6x+\frac{12}{5}\right)\)
\(=5\left[\left(3x-1\right)^2+\frac{7}{5}\right]\ge7\)
Dấu = khi \(x=\frac{1}{3};y=\frac{2}{3}\)
Ta có : \(M=\left(7x+7y\right)+\left(x+\frac{4}{x}\right)+\left(2y+\frac{50}{y}\right)\)
\(\ge7\left(x+y\right)+2\sqrt{x.\frac{4}{x}}+2\sqrt{2y.\frac{50}{y}}\)
\(\ge7.7+4+20=73\)
Dấu "=" xảy ra khi x = 2; y = 5
Theo AM - GM và Bunhiacopski ta có được
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)
Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)
\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)
Đặt \(t=\frac{z}{x+y}\ge1\)
Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)
\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)
Vậy ta có đpcm
Ta có:
\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)
Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\)
Câu 1:
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)
Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)
\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)
Dấu = xảy ra khi x=y=1/2
Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)
CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)
Dấu = xảy ra khi x=y=z=1
3 + (x²/y² + y²/x²) + (x²/z² + y²/z²) + (z²/x² + z²/y²)
x²/y² + y²/x² ≥ 2 (Theo AM - GM)
Nên A ≥ 5 + (x²/z² + y²/z²) + (z²/x² + z²/y²)
Sử dụng 2 BĐT quen thuộc sau:
a² + b² ≥ (1/2)*(a + b)²
1/a + 1/b ≥ 4/(a + b)
Đề thi vào lớp 10 môn Toán tỉnh Nghệ An năm 2014
https://thi.tuyensinh247.com/de-thi-vao-lop-10-mon-toan-tinh-nghe-an-nam-2014-c29a17566.html
Vào đó xem cho nó full :)))