Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2+y^2-2xy+2x-4y+15=0\)
\(\Rightarrow\hept{\begin{cases}x^2-\left(2y-2\right)x+y^2-4y+15=0\\y^2-\left(2x+4\right)+x^2+2x+15=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\Delta'_x=\left(y-1\right)^2-\left(y^2-4y+15\right)\ge0\\\Delta'_y=\left(x+2\right)^2-\left(x^2+2x+15\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y\ge7\\x\ge\frac{11}{2}\end{cases}}\)
\(\Rightarrow4x^2+y^2\ge4.\left(\frac{11}{2}\right)^2+7^2=170\)
Dễ thấy dấu = không xảy ra nên
\(\Rightarrow4x^2+y^2>170\)
\(gt\Rightarrow x^2+y^2\le2\left(x+2y\right)\)
Áp dụng Bđt Bunhia
\(\left(x+2y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)\le5\cdot2\left(x+2y\right)\)
\(\Rightarrow x+2y\le10\)
Dpcm
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
Xét \(5P-\left(12x+10y+15z\right)=5x^2-32x+5y^2-30y+5z^2-20z.\)
\(=5x\left(x-6,4\right)+5y\left(y-6\right)+5z\left(z-4\right).\)(1)
Mà \(x,y,z\ge0\)nên từ \(12x+10y+15z\le60\)suy ra \(\hept{\begin{cases}12x\le60\\10y\le60\\15z\le60\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\y\le6\\z\le4\end{cases}\Rightarrow}}\hept{\begin{cases}x-6,4< 0\\y-6\le0\\z-4\le0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x-6,4\right)\le0\\y\left(y-6\right)\le0\\z\left(z-4\right)\le0\end{cases}.}}\)(2)
Từ (1) và (2) suy ra \(5P-\left(12x+10y+15z\right)\le0\)
\(\Rightarrow P\le\frac{12x+10y+15z}{5}\le\frac{60}{5}=12.\)
Vậy GTLN của P=12, Dấu '=' xảy ra khi \(\hept{\begin{cases}x\left(x-6,4\right)=y\left(y-6\right)=z\left(z-4\right)=0\\12x+10y+15z=60\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=0;z=4\\x=z=0;y=6\end{cases}.}}\)
Bài 1 :
Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)
Theo BĐT Cô - Si dưới dạng engel ta có :
\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)
Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)