\(\hept{\begin{cases}x+y\le2\\x^2+y^2+xy=3\end{cases}}\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 5 2020

\(3=x^2+y^2+xy\ge2xy+xy=3xy\Rightarrow xy\le1\)

\(3=x^2+y^2+xy\ge-2xy+xy=-xy\Rightarrow xy\ge-3\)

\(\Rightarrow-3\le xy\le1\)

\(x^2+y^2+xy=3\Rightarrow x^2+y^2=3-xy\)

\(\Rightarrow T=3-xy-xy=3-2xy\ge3-2.1=1\) \(\Rightarrow A=1\)

\(T=3-2xy\le3-2.\left(-3\right)=9\Rightarrow T\le9\) \(\Rightarrow B=9\)

\(\Rightarrow A+B=10\)

2 tháng 2 2020

\(F=\)\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=x-y+\frac{2xy}{x-y}\)

\(F\ge2\sqrt{2xy}=40\sqrt{5}\left(AM-GM\right)\)

Dấu "=" xảy ra : \(\left\{{}\begin{matrix}x-y=\frac{2xy}{x-y}\\xy=1000\\x>y\end{matrix}\right.\)

giải hệ

\(\Rightarrow\left\{{}\begin{matrix}x=10\sqrt{15}+10\sqrt{5}\\y=10\sqrt{15}-10\sqrt{5}\end{matrix}\right.\)

P = 4

31 tháng 1 2020

Ta có: \(\sqrt{x^2+y^2+4x-2y+5}+\sqrt{x^2+y^2-8x-14y+65}=6\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2+\left(y-1\right)^2}+\sqrt{\left(4-x\right)^2+\left(7-y\right)^2}=6\sqrt{2}\left(^∗\right)\)

Xét hai vectơ \(\overrightarrow{u}=\left(x+2;y-1\right)\)và \(\overrightarrow{v}=\left(4-x;7-y\right)\)

Ta có: \(\overrightarrow{u}+\overrightarrow{v}=\left(6;6\right)\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}\right|=\sqrt{6^2+6^2}=6\sqrt{2}\)

Do vậy \(\left(^∗\right)\)trở thành\(\overrightarrow{u}+\overrightarrow{v}=\left|\overrightarrow{u}+\overrightarrow{v}\right|\)

Điều này xảy ra khi và chỉ khi \(\overrightarrow{u}\)và \(\overrightarrow{v}\)cùng hướng

\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(7-y\right)=\left(y-1\right)\left(4-x\right)\\\left(x+2\right)\left(4-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x+3\\-2\le x\le4\end{cases}}\)

Khi y = x + 3 thì \(x^2+y^2-2x+2y+2=2x^2+6x+17\)

Xét hàm số \(f\left(x\right)=2x^2+6x+17\)trên đoạn \(\left[-2;4\right]\)

Ta có: \(-\frac{6}{2.2}=\frac{-3}{2}\in\left[-2;4\right]\)và \(f\left(-2\right)=13;f\left(-\frac{3}{2}\right)=\frac{25}{2};f\left(4\right)=73\)

Suy ra \(|^{min}_{\left[-2;4\right]}f\left(x\right)=\frac{25}{2}\);\(|^{max}_{\left[-2;4\right]}f\left(x\right)=73\)

Do đó \(m=\frac{25}{2};M=73\)và \(n+M=\frac{171}{2}\)

Vậy \(n+M=\frac{171}{2}\)

12 tháng 5 2016

Gọi T là tập giá trị của A. Điều kiện để \(m\in T\) là hệ phương trình sau có nghiệm \(\left(x,y\right)\) với \(x\ne0;y\ne0\)

\(\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{1}{x^3}+\frac{1}{y^3}=m\end{cases}\) \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x^3y^3}=m\end{cases}\)

                                              \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{xy\left(x+y\right)}{x^3y^3}=m\end{cases}\)

                                               \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{\left(x+y\right)^2}{x^2y^2}=m\end{cases}\)  (1)

Đặt \(S=x+y\)

       \(P=xy;\left(S^2\ge4P\right)\) . Hệ (1) trở thành \(\begin{cases}SP=S^2-3P\\\frac{S^2}{P^2}=m\end{cases}\) (2)

Hệ (1) có nghiệm \(\left(x,y\right)\) với \(x\ne0;y\ne0\) khi và chỉ khi hệ (2) có nghiệm (S,P) thỏa mãn \(S^2\ge4P;P\ne0\) do

\(S^2-3P=x^2-xy+y^2=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}>0\) với mọi  \(x\ne0;y\ne0\)  nên SP > 0 \(\Rightarrow\frac{S}{P}>0\)

Như thế :

* Nếu \(m\le0\) thì hệ (2) vô nghiệm

* Nếu m > 0 thì

\(\left(2\right)\Leftrightarrow\begin{cases}SP=S^2-3P\\S=\sqrt{m}P\end{cases}\)\(\Leftrightarrow\begin{cases}\sqrt{m}P^2=mP^2-3P\\S=\sqrt{m}P\end{cases}\)

      \(\Leftrightarrow\begin{cases}\left(m-\sqrt{m}\right)P^2-3P=0\\S=\sqrt{m}P\end{cases}\) do \(P\ne0\)  \(\Leftrightarrow\begin{cases}\left(m-\sqrt{m}\right)P=3\\S=\sqrt{m}P\end{cases}\) (3)

Hệ (3) có nghiệm khi và chỉ khi \(m-\sqrt{m}\ne0\Leftrightarrow m\ne1\), lúc này từ (3) ta có :

\(P=\frac{3}{m-\sqrt{m}}\Rightarrow S=\frac{3}{\sqrt{m}-1}\)

Hệ (2) có nghiệm (S;P) thỏa mãn \(S^2\ge4;P\ne0\) khi và chỉ khi:

\(0< m\ne1\) và \(\frac{9}{\left(\sqrt{m}-1\right)^2}\ge\frac{12}{\sqrt{m}\left(\sqrt{m}-1\right)}\)

\(\Leftrightarrow0< m\ne1\) và \(3\sqrt{m}\ge4\left(\sqrt{m}-1\right)\)

\(\Leftrightarrow0< m\ne1\) và \(\sqrt{m}\le4\Leftrightarrow m\in\) (0;16] \ \(\left\{1\right\}\)

Tập giá trị của A là  (0;16] \ \(\left\{1\right\}\) suy ra max A = 16 ( không tồn tại min A)