Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi từ giả thiết
\(x^3+y^3+6xy\le8\)
\(\Leftrightarrow...\Leftrightarrow\left(x+y-2\right)\left(x^2-xy+y^2+2x+2y+4\right)\le0\)
\(\Leftrightarrow x+y-2\le0\)
(Do \(x^2-xy+y^2+2x+2y+4=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2x+2y+4>0\forall x;y>0\))
\(\Leftrightarrow x+y\le2\)
Và áp dụng các bđt \(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(a;b>0\right)\)
Khi đó \(P=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{ab}+ab\right)+\frac{3}{2ab}\)
\(\ge\frac{4}{a^2+b^2+2ab}+2+\frac{6}{\left(a+b\right)^2}\)
\(=\frac{4}{\left(a+b\right)^2}+2+\frac{6}{\left(a+b\right)^2}\ge\frac{9}{2}\)
Dấu "=" <=> a= b = 1
mình làm cho bạn 2 cách nha
Cách 1 )
ta có \(1\le y\le2\Leftrightarrow\frac{1}{y^2+1}\ge\frac{1}{2x+3}\)
ta có \(xy+2\ge2y\Leftrightarrow x\ge\frac{2\left(y-1\right)}{y}\ge0\)
ta có \(M=\frac{x^2+4}{y^2+1}=\left(x^2+4\right).\frac{1}{y^2+1}\ge\left(2x+3\right).\frac{1}{2x+3}=1\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
zậy \(minM=\frac{x^2+4}{y^2+1}khi\hept{\begin{cases}x=1\\y=2\end{cases}}\)
cách 2)
ta có \(1\le y\le2;xy+2\ge2y\Leftrightarrow4xy+8\ge8y;4x^2+y^2+8\ge4xy+8\)
từ đó ta có
\(4\left(x^2+4\right)\ge-y^2+8+8y=4\left(y^2+1\right)+\left(5y+2\right)\left(2-y\right)\ge4\left(x^2+1\right)\Rightarrow M=1\)
zậy kết luận như cách 1
Với y = 0 ta có: \(x^2=\frac{1}{2}\)=> M = 1/2 (1)
Với y khác 0
Ta có: \(M=x^2-xy+y^2=\frac{x^2-xy+y^2}{2x^2-xy+y^2}=\frac{\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}{2\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}\)
Đặt: \(\frac{x}{y}=t\)
Ta có: \(M=\frac{t^2-t+1}{2t^2-t+1}\Leftrightarrow\left(2M-1\right)t^2+\left(1-M\right)t+M-1=0\)(1)
+) Nếu 2M - 1 = 0 <=> M = 1/2 (2)
khi đó: t = 1
+) Nếu M khác 1/2
(1) có \(\Delta=\left(1-M\right)^2-4\left(2M-1\right)\left(M-1\right)=-7M+10M-3\)
Để (1) có nghiệm thì \(\Delta\ge0\)<=> \(\frac{3}{7}\le M\le1\)(3)
Từ (1); (2); (3) ta có GTNN của M = 3/7
Dấu "=" xảy ra <=> t = 2 hay \(\frac{x}{y}=2\Leftrightarrow x=2y\)
Thay vào \(2x^2-xy+y^2=1.\) ta có: \(8y^2-2y^2+y^2=1.\)
<=> \(y=\pm\frac{1}{\sqrt{7}}\)
Với \(y=\frac{1}{\sqrt{7}}\Rightarrow x=\frac{2}{\sqrt{7}}\)
Với \(y=\frac{-1}{\sqrt{7}}\Rightarrow x=\frac{-2}{\sqrt{7}}\)
Kết luận vậy min M = 1 tại ( x ; y ) \(\in\left\{\left(\frac{2}{\sqrt{7}};\frac{1}{\sqrt{7}}\right);\left(\frac{-2}{\sqrt{7}};\frac{-1}{\sqrt{7}}\right)\right\}\)