Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK: x khác 0
Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)
Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022
tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)
Có A = 2016 + xy > 2016 - 6 = 2010 !!!
Được rồi chứ gì -.-

\(P=\frac{x^2}{y^2+1}+\frac{y^2}{z^2+1}+\frac{z^2}{x^2+1}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y^2+y^2z^2+z^2x^2+x^2+y^2+z^2}\)
Với \(x^2y^2+y^2z^2+z^2x^2\le\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\Rightarrow P\ge\frac{3\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)^2+3\left(x^2+y^2+z^2\right)}=\frac{3\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+3}\)
Xét:\(\frac{3\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+3}-\frac{3}{2}=\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{2\left(x^2+y^2+z^2+3\right)}\ge0\)
Đến đây xong rồi he

Áp dụng bất đẳng thức : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) . Dấu "=" xảy ra khi a = b
Được : \(P=\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}=4\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x,y>0\\x^2+y^2=2xy\\x+y=1\end{cases}}\) \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min \(P=4\Leftrightarrow x=y=\frac{1}{2}\)

\(3=\left(x^2+\frac{1}{x^2}\right)+\left(x^2+\frac{y^2}{4}\right)\ge2+\left|xy\right|\Rightarrow\left|xy\right|\le1\Rightarrow-1\le xy\le1\Rightarrow Bantulmtiep\)
dùng bđt cô si vào phần giả thiết đã cho nhé bạn , mình đang bận không tiện làm . Nếu cần thì tối rảnh mình làm cho

Bạn kia làm ra kết quả đúng nhưng cách làm thì tào lao nhưng vẫn ra ???
Áp dụng BĐT Cô-si ta có:
\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)
Tương tự:\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\),\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)
Cộng vế với vế của 3 BĐT trên ta được:
\(P+\frac{x+y+z}{2}+\frac{\left(x+y+z\right)+3}{4}\ge\frac{9}{2}\)
\(\Leftrightarrow P+\frac{3}{2}+\frac{6}{4}\ge\frac{9}{2}\)
\(\Leftrightarrow P\ge\frac{3}{2}\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2+x}=\frac{x}{2}=\frac{x+1}{4}\\\frac{1}{y^2+y}=\frac{y}{2}=\frac{y+1}{4}\\\frac{1}{z^2+z}=\frac{z}{2}=\frac{z+1}{4},x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy \(P_{min}=\frac{3}{2}\)khi \(x=y=z=1\)
Áp dụng bđt Bunhiacopski ta có
\(P\ge\frac{9}{x^2+y^2+z^2+x+y+z}\ge\frac{9}{2\left(x+y+z\right)}=\frac{9}{6}=\frac{3}{2}.\)
Dấu "=" xảy ra khi x=y=z=1

x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0
Ta có: \(\frac{4xy}{z+1}=\frac{4xy}{2z+x+y}\le\frac{xy}{x+z}+\frac{xy}{y+z}\)
Tương tự: \(\frac{4yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)
\(\frac{4zx}{y+1}\le\frac{zx}{y+x}+\frac{zx}{y+z}\)
\(\Rightarrow4\left(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\right)\le\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{zx}{y+x}+\frac{zx}{y+z}=x+y+z=1\)
\(\Rightarrow\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{1}{4}\)
Dấu "=" xảy ra khi: x=y=z>0
Bài 2:
+) Với y=0 <=> x=0
Ta có: 1-xy= 12 (đúng)
+) Với \(y\ne0\)
Ta có: \(x^6+xy^5=2x^3y^2\)
\(\Leftrightarrow x^6-2x^3y^2+y^4=y^4-xy^5\)
\(\Leftrightarrow\left(x^3-y^2\right)^2=y^4\left(1-xy\right)\)
\(\Rightarrow1-xy=\left(\frac{x^3-y^2}{y^2}\right)^2\)

\(x+y=1\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)
=> \(A=x^3+y^3=\left(x+y\right)^3-3xy.\left(x+y\right)\ge1^2-3\cdot\frac{1}{4}\cdot1=\frac{1}{4}\)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)
vậy ...
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1-3xy\ge1-3.\frac{1}{4}=\frac{1}{4}\)
Dấu \(=\)khi \(x=y=\frac{1}{2}\).