\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2020

Chỉ cần x = y là dc, ko cần lớn hơn 0 :v

1 tháng 7 2020

Đặt \(\frac{x}{y}+\frac{y}{x}=a\)

Ta có: A = \(3\left(a^2-2\right)-8a=3a^2-8a-6=3\left(a-\frac{4}{3}\right)^2-\frac{34}{3}\)

Mặt khác: a2 \(=\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\ge4\)

Nên \(a\ge2\) hoặc \(a\le-2\)

+) Nếu \(a\ge2\) thì \(a-\frac{4}{3}\ge\frac{2}{3}>0\). \(A\ge3.\left(\frac{2}{3}\right)^2-\frac{34}{3}=-10\)

+) Nếu \(a\le-2\) thì \(a-\frac{4}{3}\le\frac{-10}{3}< 0\). \(A\ge3.\left(\frac{-10}{3}\right)^2-\frac{34}{3}=22\)

SS 2 TH, ta được Min A = -10 khi và chỉ khi a = 2 tức x = y > 0.

10 tháng 4 2019

Ta có:\(\frac{\left(x-y\right)^2}{xy}\ge0\forall x,y\)

      \(\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)

Áp dụng BĐT Cô-si vào các số dương \(\frac{x^2}{y^2},\frac{y^2}{x^2}\)ta có:

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}.\frac{y^2}{x^2}}=2\left(2\right)\)

Áp dụng BĐT \(\left(1\right),\left(2\right)\)ta được:

\(A=3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2-8.2=-10\)

Dấu '=' xảy ra khi \(x=y\)

Vậy \(A_{min}=-10\)khi \(x=y\)

^^

16 tháng 6 2016

Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\). Ta có:

\(A=3\left(t^2-2\right)-8t=3t^2-8t-6\)nên:

\(A\ge-10\Leftrightarrow3t^2-8t-6\ge-10\Leftrightarrow3t^2-8t+4\ge0\Leftrightarrow\left(t-2\right)\left(3t-2\right)\ge0\), luôn đúng do:

\(t=\frac{x}{y}+\frac{y}{x}\ge2\)với \(x,y\) cùng dấu và \(t\le-2\) với \(x,y\)khác dấu.

Dấu "=" xảy ra khi \(t=2\Leftrightarrow x=y.\)

4 tháng 6 2019

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\ge0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\)

\(\Rightarrow Q.E.D\)

Dấu "=" xảy ra khi a=b

4 tháng 6 2019

\(gt\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=6\)

Đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)thì \(P=a^2+b^2+c^2\)và \(a+b+c+ab+bc+ca=6\)

Giải:

Ta có: \(x^2+1\ge2\sqrt{x^2\cdot1}=2x\)

Tương tự rồi cộng theo vế ta được: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1) 

Lại có: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2) 

Cộng (1), (2) theo vế ta được:

\(3P+3\ge2\left(x+y+z+xy+yz+zx\right)=2\cdot6=12\)

\(\Rightarrow3P\ge9\Leftrightarrow P\ge3\)

MinP = 3 khi a = b = c = 1 hay x = y = z = 1

28 tháng 5 2017

áp dụng AM-GM :

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2y^2}{x^2y^2}}=2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{yx}}=2\)

 do đó \(A\ge3.2-2.8=-10\)thì \(A_{MIN}=-10\)DẤU = sảy ra khi x= y

28 tháng 5 2017

Hoàng Thanh Tuấn số thực khác 0 khôg có nghĩa là số không âm nên... ko áp dụng dc đâu 

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

16 tháng 10 2017

trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)