Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy \(x^3+y^3+z^3\leq 9\)
\(\Leftrightarrow (x+y+z)^3-3(x+y)(y+z)(z+x)\leq 9\)
\(\Leftrightarrow 27-3[(x+y+z)(xy+yz+xz)-xyz]\leq 9\)
\(\Leftrightarrow 3(xy+yz+xz)-xyz\geq 6(\star)\)
Vì \(x,y,z\in [0;2]\Rightarrow (x-2)(y-2)(z-2)\leq 0\)
\(\Leftrightarrow xyz+4\leq 2(xy+yz+xz)\)
Mặt khác \(xyz\geq 0\rightarrow 2(xy+yz+xz)\geq 4\rightarrow xy+yz+xz\geq 2\)
Do đó \(3(xy+yz+xz)-xyz\geq 2+4+xyz-xyz=6\)
Từ đó BĐT \((\star)\) hay ta có đpcm
Dấu bằng xảy ra khi \((x,y,z)=(2,1,0)\) và các hoán vị.
Áp dụng BĐT Am-Gm ta có:
\(\left[xy\left(x+y\right)\right]\left[xy\left(x+y\right)\right]\left[xy\left(x+y\right)\right]\left(x^3+y^3\right)\le\left[\dfrac{3xy\left(x+y\right)+x^3+y^3}{4}\right]^4\)( dạng \(abcd\le\left(\dfrac{a+b+c+d}{4}\right)^4\))
\(\Leftrightarrow\left(x+y\right)^3.x^3y^3\left(x^3+y^3\right)\le\dfrac{\left(x+y\right)^{12}}{4^4}\)
\(\Leftrightarrow x^3y^3\left(x^3+y^3\right)\le\dfrac{\left(x+y\right)^9}{4^4}=\dfrac{2^9}{2^8}=2\)
Dấu = xảy ra khi x=y=1
Ta có: \(VT=x-\dfrac{xyz}{yz+1}+y-\dfrac{xyz}{xz+1}+z-\dfrac{xyz}{xy+1}\)
\(=x+y+z-xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\right)\)
Ta sẽ chứng minh BĐt sau :
\(xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\right)\ge xyz\)
hay \(xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}-1\right)\ge0\)
Mà đây là 1 điều luôn đúng vì \(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\ge\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{x^2+y^2+z^2+3}>1\) và \(xyz\ge0\)
Do đó \(VT\le x+y+z-xyz=x\left(1-yz\right)+y+z\)(*)
Áp dụng BĐt bunyakovsky:
\(VT^2=\left[x\left(1-yz\right)+\left(y+z\right).1\right]^2\le\left[x^2+\left(y+z\right)^2\right]\left[1+\left(1-yz\right)^2\right]\)\(=\left(2+2yz\right)\left(y^2z^2-2yz+2\right)=4+2y^2z^2\left(yz-1\right)\le4\)
( do \(yz\le\dfrac{y^2+z^2}{2}\le\dfrac{x^2+y^2+z^2}{2}=1\))
\(\Rightarrow VT\le2\) (đpcm)
Dấu = xảy ra khi \(x=0;y=z=1\) cùng các hoán vị
P/s: Từ chỗ (*) là 1 BĐT có nhiều cách chứng minh .