\(\frac{1}{x^3\left(2y-x\right)}+x^2+y^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 6 2019

\(P=\frac{1}{x^3\left(2y-x\right)}+x\left(2y-x\right)-x\left(2y-x\right)+x^2+y^2\)

\(P\ge\frac{2}{x}-2xy+2x^2+y^2\)

\(P\ge\frac{1}{x}+\frac{1}{x}+x^2+\left(x-y\right)^2\ge3+\left(x-y\right)^2\ge3\)

Dấu "=" xảy ra khi \(x=y=1\)

AH
Akai Haruma
Giáo viên
19 tháng 6 2019

Lời giải:

Với $x,y$ là các số thực dương, áp dụng BĐT Cauchy ta có:

\(x^2+y^2\geq 2xy\)

\(\Rightarrow \frac{1}{x^3(2y-x)}+x^2+y^2\geq \frac{1}{x^3(2y-x)}+2xy(1)\)

$2y>x$ nên $2y-x>0$. Tiếp tục áp dụng BĐT Cauchy cho các số dương ta có:

\(\frac{1}{x^3(2y-x)}+2xy=\frac{1}{x^3(2y-x)}+x(2y-x)+x^2\geq 3\sqrt[3]{\frac{1}{x^3(2y-x)}.x(2y-x).x^2}=3(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{x^3(2y-x)}+x^2+y^2\geq 3\) (đpcm)

Dấu "=" xảy ra khi $x=y=1$

21 tháng 8 2019

Trả lời

Từ giả thiết x+y+z=xyz <=> 1/xy + 1/yz + 1/zx = 1

Khi đó: x/1+x2 = \(\frac{1}{\frac{x}{\left(\frac{1}{z}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}}\)\(=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)

Tương tự cho 2 cái còn lại ta có:\(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)

\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)

Suy ra VT=\(\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

ĐPCM

21 tháng 8 2019

 Ta có:\(\frac{x}{1+x^2}=\frac{xyz}{yz+x^2yz}=\frac{xyz}{yz+x\left(xyz\right)}=\frac{xyz}{yz+x\left(x+y+z\right)}=\frac{xyz}{yz+x^2+xy+xz}=\frac{xyz}{y\left(x+z\right)+x\left(x+z\right)}\)

\(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}\)

Chứng minh tương tự : \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(y+z\right)\left(y+x\right)}\)

                                        \(\frac{3z}{1+z^2}=\frac{3xyz}{\left(x+z\right)\left(x+y\right)}\)

Khi đó VT \(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}+\frac{2xyz}{\left(y+z\right)\left(y+x\right)}+\frac{3xyz}{\left(x+z\right)\left(z+y\right)}\)

\(=\frac{xyz\left[y+z+2\left(z+x\right)+3\left(x+y\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(đpcm\right)\)

( mình đang vội nên làm hơi tắt mong bạn thông cảm )

NV
23 tháng 4 2019

Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow P\ge\frac{1}{2}\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2=\frac{1}{2}\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2\)

\(\Rightarrow P\ge\frac{1}{2}\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2=18\)

\(\Rightarrow P_{min}=18\) khi \(x=y=\frac{1}{2}\)

23 tháng 8 2016

câu nào cx ghi là lớp 8 nhưng thực ra lớp 9 cx k nổi vc

23 tháng 8 2016

lớp 8 đó anh Thắng ạ =.="

6 tháng 4 2019

_Solution:

Prove with Cauchy-Schwarz inequality engel form, we have:

\(A=\frac{1}{x^3+3xy^2}+\frac{1}{y^3+3x^2y}\ge\frac{4}{x^3+y^3+3xy^2+3x^2y}\)

\(A\ge\frac{4}{\left(x+y\right)^3}\)

Other way: \(x+y\le1\Rightarrow\left(x+y\right)^3\le1\Rightarrow\frac{1}{\left(x+y\right)^3}\ge1\)

\(\Rightarrow A\ge4\) (proof)

We have ''='' \(\Leftrightarrow x=y=\frac{1}{2}\).