\(x^2+y^2=1\). Tìm GTNN của biểu thức : 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

                                    Lời giải

Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)

Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)

\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)

\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)

\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)

Vậy ...

22 tháng 1 2017

Ta có: \(1\ge x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)

\(\Rightarrow P\ge2\sqrt{\frac{1}{xy}}\cdot\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}\)

Mà \(\frac{1}{xy}+xy=\frac{15}{16}\cdot\frac{1}{xy}+\frac{1}{16xy}+xy\)

\(\ge\frac{15}{16}\cdot4+2\sqrt{\frac{1}{16xy}\cdot xy}=\frac{15}{16}\cdot4+\frac{2}{4}=\frac{17}{4}\)

\(\Rightarrow P\ge2\cdot\frac{\sqrt{17}}{2}=\sqrt{17}\) xảy ra khi \(x=y=\frac{1}{2}\)

22 tháng 1 2017

v~ máy mk ko gõ dc chữ "x" 

4 tháng 5 2019

Dự đoán điểm rơi tại x = y = 2/3 ta sẽ làm như sau

\(A=x+y+\frac{1}{x}+\frac{1}{y}\)

    \(=\left(\frac{9x}{4}+\frac{1}{x}\right)+\left(\frac{9y}{4}+\frac{1}{y}\right)-\frac{5}{4}\left(x+y\right)\)

     \(\ge2\sqrt{\frac{9x}{4x}}+2\sqrt{\frac{9y}{4y}}-\frac{5}{4}.\frac{4}{3}=\frac{13}{3}\)

    Dấu "=" tại x = y = 2/3

4 tháng 5 2019

Cách khác là UCT (không hay như cách kia đâu=)

Ta sẽ chứng minh: \(x+\frac{1}{x}\ge-\frac{5}{4}x+3\)

\(\Leftrightarrow\frac{\left(3x-2\right)^2}{4x}\ge0\) (đúng)

Thiết lập tương tự BĐT còn lại và cộng theo vế ta được: \(VT\ge-\frac{5}{4}\left(x+y\right)+6\ge-\frac{5}{4}.\frac{4}{3}+6=\frac{13}{3}\)

Dấu "=" xảy ra khi 3x - 2 = 3y - 2 = 0 tức là x = y = 2/3

25 tháng 4 2019

Biến đổi từ giả thiết

\(x^3+y^3+6xy\le8\)

\(\Leftrightarrow...\Leftrightarrow\left(x+y-2\right)\left(x^2-xy+y^2+2x+2y+4\right)\le0\)

\(\Leftrightarrow x+y-2\le0\)

(Do \(x^2-xy+y^2+2x+2y+4=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2x+2y+4>0\forall x;y>0\))

\(\Leftrightarrow x+y\le2\)

Và áp dụng các bđt \(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}\)

                                 \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(a;b>0\right)\)

Khi đó \(P=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{ab}+ab\right)+\frac{3}{2ab}\)

               \(\ge\frac{4}{a^2+b^2+2ab}+2+\frac{6}{\left(a+b\right)^2}\)

                 \(=\frac{4}{\left(a+b\right)^2}+2+\frac{6}{\left(a+b\right)^2}\ge\frac{9}{2}\)

Dấu "=" <=> a= b = 1

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

20 tháng 12 2017

Bạn ơi đề hình như là tìm GTLN 

Xét x/x+1 < = x/x+x+y+z = x/(x+y)+(x+z)

Áp dụng bđt 1/a+b < = 1/4.(1/a + 1/b) với a,b > 0 thì

x/x+1 < = x/4.(1/x+y + 1/x+z) = 1/4.(x/x+y + x/x+z)

Tương tự : y/y+1 < =  1/4.(y/x+y + y/y+z) ; z/z+! < = 1/4.(z/z+x + z/y+z)

=> M < = 1/4.(x/x+y + y/x+y + y/y+z + z/y+z + z/x+z + x/z+x) = 1/4.(1+1+1) = 3/4

Dấu "=" xảy ra <=> x+y+z = 1 và x=y=z <=> x=y=z=1/3

Vậy GTLN của M = 3/4 <=> x=y=z=1/3

k mk nha

20 tháng 5 2017

Cho các số thực dương x,y nha

20 tháng 5 2017

bên h h có đấy