Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\)
=> \(VT\ge3\)
mà \(3-\left(y+2\right)^2\le3\Rightarrow VP\le3\)
=> VT=VP=3 <=> ... cậu tự giải tiếp nhé
Từ \(x+y=4\Rightarrow y=4-x\)
\(\Rightarrow\left|x+2\right|+\left|y\right|=\left|x+2\right|+\left|4-x\right|=6\)(1)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :
\(\left|x+2\right|+\left|4-x\right|\ge\left|x+2+4-x\right|=6\)
Vậy để (1) xảy ra \(\Leftrightarrow\left(x+2\right)\left(4-x\right)\ge0\Leftrightarrow-2\le x\le4\)
Với x = - 2 thì y = 6 ; x = - 1 thì y = 5; x = 0 thì y = 4; x = 1 thì y = 3; x = 2 thì y = 2 ; x = 3 thì y = 1; x = 4 thì y = 0
Vậy \(\left(x;y\right)=\left\{\left(-2;6\right);\left(-1;5\right);\left(0;4\right);\left(1;3\right);\left(2;2\right);\left(3;1\right);\left(4;0\right)\right\}\)
Vì \(\hept{\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\forall x\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\forall y\\\left|x+y+z\right|\ge0\forall x;y;z\end{cases}}\)
Do đó : \(\hept{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{cases}}\)
vì \(\left|x+1\right|\ge0\) với mọi x
\(\left|x-y+2\right|\ge0\) với mọi x;y
=>\(\left|x+1\right|+\left|x-y+2\right|\ge0\) với mọi x;y
Mà theo đề:........=0
=>|x+1|=0=>x=-1
và x-y+2=0=>x-y=2=>y=x-2=-1-2=-3
Vậy (x;y)=(-1;-3)
bài 2:36x chia hết cho 3 (1)
75y chia hết cho 3 (2)
=>36x+75y chia hết chỏ ,mà 136 ko chia hết cho 3
=>36x+75y \(\ne\) 136
=>ko có (x;y) thoả mãn đề bài
Ta thấy : VT >= 0
Dấu "=" xảy ra <=> x-\(\sqrt{2}\)= 0 ; y+\(\sqrt{2}\)= 0 ; x+y+z = 0
<=> x=\(\sqrt{2}\); y=\(-\sqrt{2}\); z = 0
Vậy ...........
Tk mk nha
bày em cách làm với được không ạ? em tự suy ra chứ thầy cô chưa bày j cả nên là em cx chưa hiểu cho lắm mong anh giúp đỡ ạ
\(\text{Vì }\left|x-2\right|\ge0;\left(y+1\right)^2\ge0\)
\(\text{Mà }\left|x-2\right|+\left(y+1\right)^2=0\)
\(\Rightarrow x-2=0\text{ và }y+1=0\)
\(\Rightarrow x=2\text{ và }y=-1\)
Khi đó \(x+y=2+\left(-1\right)=2-1=1\).