\(\frac{x^2-1}{2}=\frac{y^2-1}{3}\)

Chứng minh xy ch...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

Cho hỏi bạn có phải từng là h/s trường Tiểu học thị trấn Rừng Thông ko?

Nếu đúng thì liệu cậu sẽ còn nhớ mình

2 tháng 12 2018

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+....+\frac{4031}{2015^2.2016^2}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-.....-\frac{1}{2016^2}=1-\frac{1}{2016^2}\)

\(\frac{1}{2016^2}>0\Rightarrow A< 1\left(ĐPCM\right)\)

bạn chờ xíu mk lm câu sau nha

2 tháng 12 2018

Bạn chờ xíu mk lm cho xong nha

7 tháng 5 2020

Gọi \(d=gcd\left(x;y\right)\Rightarrow x=md;y=nd\) với \(\left(m;n\right)=1;m,n\inℕ^∗\)

Ta có:\(A=\frac{x^2+py^2}{xy}=\frac{m^2d^2+pn^2d^2}{mnd^2}=\frac{m^2+pn^2}{mn}\)

\(\Rightarrow m^2+pn^2⋮mn\)

\(\Rightarrow\hept{\begin{cases}m^2+pn^2⋮m\\m^2+pn^2⋮n\end{cases}}\Rightarrow m^2⋮n\)

Mà \(\left(m;n\right)=1\Rightarrow n=1\Rightarrow m^2+p⋮m\Rightarrow p⋮m\)

Mà p là số nguyên tố nên \(m=1\left(h\right)m=p\)

Với \(m=1\Rightarrow x=y=d\Rightarrow\frac{x^2+py^2}{xy}=1+p\)

Với \(m=p\Rightarrow x=dp;y=d\Rightarrow\frac{x^2+py^2}{xy}=p+1\)

Vậy ta có đpcm