Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1)(2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x-y+z}{16-12+15}=\frac{33}{19}\)
Sau đó bạn tự tìm x, y, z là đc
Học tốt nhé :)
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
Bài 1: Tính
a) \(1:\) \(\frac{99}{100}:\frac{98}{97}\)\(:\frac{97}{96}:...:\)\(\frac{2}{3}:\frac{1}{2}\)
b) \(\left(\frac{7}{20}+\frac{11}{15}-\frac{15}{12}\right)\)\(:\)\(\left(\frac{11}{20}-\frac{26}{45}\right)\)
c) \(\frac{5-\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}{8-\frac{8}{3}+\frac{8}{9}-\frac{8}{27}}\)\(:\)\(\frac{15-\frac{15}{11}+\frac{15}{121}}{16-\frac{16}{11}+\frac{16}{11}}\)
d) \(\frac{\frac{1}{9}-\frac{5}{6}-4}{\frac{7}{12}-\frac{1}{36}-10}\)
Bài 2: Tìm x:
a) \(\left(x+\frac{1}{4}-\frac{1}{3}\right)\)\(:\)\(\left(2+\frac{1}{6}-\frac{1}{4}\right)\)\(=\frac{7}{46}\)
b) \(\frac{13}{15}-\left(\frac{13}{21}+x\right).\frac{7}{12}=\frac{7}{10}\)
Bài 3:
Tìm tổng các số nghịch đảo của các số 10; 40; 88; 154; 238; 340.
Bài 4:
Một ô tô chạy trong \(\frac{4}{5}\)giờ được 32 km. Ô tô chạy quãng đường AB mất \(3\frac{1}{2}\)giờ. Tính vận tốc của ô tô và độ dài quãng đường AB.
Bài 5:
Một người đi từ A đến B mất 45 phút trong khi đó người thứ 2 đi từ B về A mất 30 phút. Nếu hai người cùng khởi hành thì sau bao nhiêu phút thì gặp nhau?
Bài 6:
Cho a; b; c; \(\in\)N*. Chứng tỏ rằng \(\frac{a+b}{c}\)\(+\)\(\frac{b+c}{a}+\frac{c+a}{b}\)\(\ge\)b
Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)
Khi đó r > 3 nên r là số lẻ
=> p.q không cùng tính chẵn lẻ
Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)
Nếu q không chia hết cho 3 thì q^2 =1 (mod3)
Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)
Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)
Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố
Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17
Bài 1:
$\frac{x}{-9}=\frac{-8}{y}=\frac{z}{-21}=\frac{-10}{15}=\frac{-2}{3}$
$\Rightarrow x=\frac{-2}{3}.(-9)=6; y=(-8):\frac{-2}{3}=12; z=(-21).\frac{-2}{3}=14$
Do đó:
$x+y-z=6+12-14=4$
Bài 2:
$\frac{-5}{2}< x< \frac{1}{2}$
$\Rightarrow -2,5< x< 0,5$
Mà $x$ nguyên nên $x$ có thể nhận các giá trị $\left\{-2; -1; 0\right\}$
Tổng bình phương các số nguyên $x$ thỏa mãn:
$(-2)^2+(-1)^2+0^2=5$