Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)
Khi đó r > 3 nên r là số lẻ
=> p.q không cùng tính chẵn lẻ
Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)
Nếu q không chia hết cho 3 thì q^2 =1 (mod3)
Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)
Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)
Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố
Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17
Ta có : x2 - y2 = 45
=> x2 + xy - (y2 + xy) = 45
=> x(x + y) - y(x + y) = 45
=> (x - y)(x + y) = 45
Vì x ; y là số nguyên tố
=> \(x;y\inℕ^∗;x>y\left(\text{vì }x^2>y^2\text{ và }x>y\right)\Rightarrow\hept{\begin{cases}x-y\inℕ^∗\\x+y\inℕ^∗\end{cases}\left(x-y>x+y\right)}\)
Khi đó 45 = 15.3 = 9.5 = 1.45
Lập bảng xét các trường hợp :
x - y | 1 | 5 | 3 |
x + y | 45 | 9 | 15 |
x | 23 | 7(tm) | 9 |
y | 22 | 2(tm) | 6 |
Vậy x = 7 ; y = 2
Vì \(\left(x-2\right)^2\ge0\) và \(\left(y-3\right)^2\ge0\) nên \(\left(x-2\right)^2.\left(y-3\right)^2\ge0\)
Mà \(-4< 0\) nên không có các số nguyên tố x, y thoả mãn đề bài
Vậy không có số nguyên tố x và y
1, Có (x-2)2\(\ge\)0
(y-2)2\(\ge\)0
=>(x-2)2.(y-3)2\(\ge\)0
Mà (x-2)2.(y-3)2=-4
Vậy không có x, y thỏa mãn
Có 111...1=11.1010...01
Vậy số 111...1(2002 số 1) sẽ chia hết cho 11 nên nó sẽ là hợp sô
(phần này hơi sơ sài nên có cái gì phải hỏi luôn