Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3=2xy\)
Bình phương 2 vế ta được:
\(\left(x^3+y^3\right)^2=4x^2y^2\)
<=> \(x^6+y^6+2x^3y^3=4x^2y^2\)
<=> \(x^6+y^6-2x^3y^3=4x^2y^2-4x^3y^3\)
<=> \(\left(x^3-y^3\right)^2=4x^2y^2\left(1-xy\right)\)
<=> \(1-xy=\frac{\left(x^3-y^3\right)^2}{4x^2y^2}=\left(\frac{x^3-y^3}{2xy}\right)^2\)
=> \(\sqrt{1-xy}=\left|\frac{x^3-y^3}{2xy}\right|\) là 1 số hữu tỉ
=> đpcm
\(\sqrt{a}+\sqrt{b}=m\Leftrightarrow m-\sqrt{a}=\sqrt{b}\Rightarrow m^2-2m\sqrt{a}+a=b\)
\(\Leftrightarrow\sqrt{a}=\frac{m^2+a-b}{2m}\)là số hữu tỉ.
Tương tự cũng suy ra \(\sqrt{b}\)là số hữu tỉ.
3/ Ta có:
\(x+y+z=0\)
\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)
\(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Ta có:
\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)
\(=-ax^2-by^2-cz^2\)
\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Leftrightarrow ax^2+by^2+cz^2=0\)
1/ Đặt \(a-b=x,b-c=y,c-z=z\)
\(\Rightarrow x+y+z=0\)
Ta có:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
Áp dụng bđt cô-si dạng engel:
\(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)
Vậy đẳng thức chỉ xảy ra khi x ; y \(\ge0\)( đpcm )
Chúc bạn học tốt!
Ta có :
\(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}\ge0\\\sqrt{x+y}\ge0\end{cases}}\)
\(\Rightarrow\)\(\left(\sqrt{x}+\sqrt{y}\right)^2\ge\left(\sqrt{x+y}\right)^2\)
\(\Leftrightarrow\)\(x+2\sqrt{x}\sqrt{y}+y\ge x+y\)
\(\Leftrightarrow\)\(2\sqrt{x}\sqrt{y}\ge0\) ( luôn đúng với mọi \(x,y\ge0\) )
Vậy \(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\) với \(x,y\ge0\)
Chúc bạn học tốt ~
\(VT=x\sqrt{y}+\frac{1}{2}y\sqrt{4\left(2x+2y\right)}\le\frac{x\left(y+1\right)}{2}+\frac{1}{2}y\left(\frac{4+2x+2y}{2}\right)\)
\(=\frac{2xy+2x}{4}+\frac{4y+2xy+2y^2}{4}=\frac{2\left(x+2y\right)+4xy+2y^2}{4}\)
\(=\frac{2\left(x+2y\right)+\frac{2}{3}.3y\left(2x+y\right)}{4}\le\frac{2\left(x+2y\right)+\frac{2}{3}\left(\frac{2\left(x+2y\right)}{2}\right)^2}{4}\le3\) (*)
Đẳng thức xảy ra khi x= y = 1.
Is that true? Bài này khó nhằn đấy, Đối với mình việc nhìn ra chỗ (*) ko dễ chút nào, chả biết có tính sai gì ko nữa..
Áp dụng bđt AM-GM:
\(x^2+\dfrac{1}{x}\ge2\sqrt{x}\)
\(y^2+\dfrac{1}{y}\ge2\sqrt{y}\)
Cộng theo vế: \(VT=x^2+y^2+\dfrac{1}{x}+\dfrac{1}{y}\ge2\left(\sqrt{x}+\sqrt{y}\right)=VP\)
\("="\Leftrightarrow x=y=1\)
Dễ thấy phương trình có nghiệm tầm thường là x = y = 0.
Tìm nghiệm khác 0. Đặt:
\(x=\frac{m}{n};y=\frac{-k}{l}\)(m, n, l, k khác 0)
\(\sqrt{\frac{3}{2}}=\frac{m.l}{n.k}\)
Vế trái là số vô tỷ. Do đó không có bất kỳ m, n, l, k nào thỏa mãn vì vế phải luôn luôn là số hữu tỷ.
Vậy phương trình có 1 nghiệm x = y = 0