\(\dfrac{x^2+y^2}{xy}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 2 2018

Lời giải:

Ta có:

\(P=\frac{x^2+y^2}{xy}=\frac{\frac{3}{4}x^2}{xy}+\frac{\frac{x^2}{4}+y^2}{xy}\)

Áp dụng BĐT Cô-si: \(\frac{x^2}{4}+y^2\geq 2\sqrt{\frac{x^2y^2}{4}}=xy\)

\(\Rightarrow \frac{\frac{x^2}{4}+y^2}{xy}\geq \frac{xy}{xy}=1\)

Và: \(\frac{\frac{3}{4}x^2}{xy}=\frac{3x}{4y}\geq \frac{3.2y}{4y}=\frac{3}{2}\)

Do đó: \(P\geq \frac{3}{2}+1=\frac{5}{2}\Leftrightarrow P_{\min}=\frac{5}{2}\)

Dấu bằng xảy ra khi \(x=2y\)

22 tháng 2 2018

ta có x>=2y suy ra x-2y>=0

m=x^2/xy+y^2/xy điều kiện x,y khác 0

M=x/y+y/x

2M=2x/y+2y/x

2M=2.x/y+(-x+2y+x)/x

2m=2.(x-2y)/y+2.2y/x-(x-2y)/x+x/x

2m=2(x-2y)/y-(x-2y)/x+5

vì x-2y>=0=>2(x-2y)/y-(x-2y)/x+5>=5

2M>=5

2M>5/2

vậy M=5/2

chưa chắc đã đúg đôu đúg tk mk nha

22 tháng 2 2018

Đặt \(\frac{x}{y}=a\)

Vì \(x\ge2y>0\Rightarrow a\ge2\)

Khi đó \(P=\frac{x}{y}+\frac{y}{x}=a+\frac{1}{a}=\left(\frac{1}{a}+\frac{a}{4}\right)+\frac{3a}{4}\ge2\sqrt{\frac{1}{a}.\frac{a}{4}}+\frac{3a}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)

Dấu " \(=\)" xảy ra \(\Leftrightarrow\)\(a=2\Leftrightarrow x=2y>0\)

17 tháng 5 2020

Vì x,y là số thực dương nên theo BĐT Cosi ta có:

\(x+y\ge2\sqrt{xy}\) Dấu "=" xảy ra <=> x=y hay x+x+x2=15 => x=y=3

GT: x+y+xy=15 => xy=15-(x+y)

Do đó: \(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2-30+2\left(x+y\right)\ge\left(2\sqrt{xy}\right)^2-30+2\cdot2\sqrt{xy}\)

Dấu "=" xảy ra <=> x=y=3

Vậy \(min_P=4\cdot3^2-30+4\cdot3=18\Leftrightarrow x=y=3\)

DD
23 tháng 5 2021

\(x\ge2y\Rightarrow x-y\ge y\Rightarrow x\left(x-y\right)\ge2y^2\Rightarrow x^2-xy-2y^2\ge0\).

\(\left(x-2y\right)^2\ge0\Leftrightarrow x^2-4xy+4y^2\ge0\)

\(\Rightarrow\left(x^2-xy-2y^2\right)+\left(x^2-4xy+4y^2\right)\ge0\)

\(\Leftrightarrow x^2+y^2\ge\frac{5}{2}xy\)

\(A=\frac{x^2+y^2}{xy}\ge\frac{\frac{5}{2}xy}{xy}=\frac{5}{2}\)

Dấu \(=\)xảy ra khi \(x=2y>0\)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

5 tháng 6 2017

Áp dụng nè : \(\frac{2}{x^2+y^2}+\frac{2}{2xy}\ge\frac{8}{\left(x+y\right)^2}\ge\frac{1}{2}\)

5 tháng 6 2017

khó was

1 tháng 6 2015

sorry lam lon

M=(x^2+y^2/xy=x^2/xy+y^2/xy=x^2/4xy +x^2/4xy +x^2/4xy+x^2/4xy + 4y^2/4xy

Do  x,y > 0 nên áp dụng cô si cho 5 số dương ta có :

M  ≥ 5 . Căn 5 của (x^2/4xy . x^2/4xy .x^2/4xy.4y^2/4xy)=5.căn 5 của (x^3/256y^3)   (*)

Mặt khác do x ≥ 2y =>x^3 ≥ 8y^3 nên từ (*) ta có :

≥ 5.can 5 cua (8y^3/256y^3)=5.can 5 cua (1/32)=5.1/2 =5/2

Dau " ≥ " khi 

{x^2/4xy = 4y^2/4xy

{x^3=8y^3

=>x  ≥  2y

Vậy :​x  ≥ 2y

30 tháng 5 2016

\(M=\frac{x^2}{xy}+\frac{y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)

\(x\ge2y\Rightarrow\frac{x}{y}\ge2;\frac{y}{x}\ge\frac{1}{2}\)

\(\Rightarrow M\ge2+\frac{1}{2}=\frac{5}{2}\)

\(\text{Dấu "=" xảy ra khi x=1;y=}\frac{1}{2}\)

\(\text{Vậy....}\)