Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có x>=2y suy ra x-2y>=0
m=x^2/xy+y^2/xy điều kiện x,y khác 0
M=x/y+y/x
2M=2x/y+2y/x
2M=2.x/y+(-x+2y+x)/x
2m=2.(x-2y)/y+2.2y/x-(x-2y)/x+x/x
2m=2(x-2y)/y-(x-2y)/x+5
vì x-2y>=0=>2(x-2y)/y-(x-2y)/x+5>=5
2M>=5
2M>5/2
vậy M=5/2
chưa chắc đã đúg đôu đúg tk mk nha
Đặt \(\frac{x}{y}=a\)
Vì \(x\ge2y>0\Rightarrow a\ge2\)
Khi đó \(P=\frac{x}{y}+\frac{y}{x}=a+\frac{1}{a}=\left(\frac{1}{a}+\frac{a}{4}\right)+\frac{3a}{4}\ge2\sqrt{\frac{1}{a}.\frac{a}{4}}+\frac{3a}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)
Dấu " \(=\)" xảy ra \(\Leftrightarrow\)\(a=2\Leftrightarrow x=2y>0\)
Vì x,y là số thực dương nên theo BĐT Cosi ta có:
\(x+y\ge2\sqrt{xy}\) Dấu "=" xảy ra <=> x=y hay x+x+x2=15 => x=y=3
GT: x+y+xy=15 => xy=15-(x+y)
Do đó: \(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2-30+2\left(x+y\right)\ge\left(2\sqrt{xy}\right)^2-30+2\cdot2\sqrt{xy}\)
Dấu "=" xảy ra <=> x=y=3
Vậy \(min_P=4\cdot3^2-30+4\cdot3=18\Leftrightarrow x=y=3\)
\(x\ge2y\Rightarrow x-y\ge y\Rightarrow x\left(x-y\right)\ge2y^2\Rightarrow x^2-xy-2y^2\ge0\).
\(\left(x-2y\right)^2\ge0\Leftrightarrow x^2-4xy+4y^2\ge0\)
\(\Rightarrow\left(x^2-xy-2y^2\right)+\left(x^2-4xy+4y^2\right)\ge0\)
\(\Leftrightarrow x^2+y^2\ge\frac{5}{2}xy\)
\(A=\frac{x^2+y^2}{xy}\ge\frac{\frac{5}{2}xy}{xy}=\frac{5}{2}\)
Dấu \(=\)xảy ra khi \(x=2y>0\).
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Áp dụng nè : \(\frac{2}{x^2+y^2}+\frac{2}{2xy}\ge\frac{8}{\left(x+y\right)^2}\ge\frac{1}{2}\)
sorry lam lon
M=(x^2+y^2/xy=x^2/xy+y^2/xy=x^2/4xy +x^2/4xy +x^2/4xy+x^2/4xy + 4y^2/4xy
Do x,y > 0 nên áp dụng cô si cho 5 số dương ta có :
M ≥ 5 . Căn 5 của (x^2/4xy . x^2/4xy .x^2/4xy.4y^2/4xy)=5.căn 5 của (x^3/256y^3) (*)
Mặt khác do x ≥ 2y =>x^3 ≥ 8y^3 nên từ (*) ta có :
M ≥ 5.can 5 cua (8y^3/256y^3)=5.can 5 cua (1/32)=5.1/2 =5/2
Dau " ≥ " khi
{x^2/4xy = 4y^2/4xy
{x^3=8y^3
=>x ≥ 2y
Vậy :x ≥ 2y
\(M=\frac{x^2}{xy}+\frac{y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)
\(x\ge2y\Rightarrow\frac{x}{y}\ge2;\frac{y}{x}\ge\frac{1}{2}\)
\(\Rightarrow M\ge2+\frac{1}{2}=\frac{5}{2}\)
\(\text{Dấu "=" xảy ra khi x=1;y=}\frac{1}{2}\)
\(\text{Vậy....}\)
Lời giải:
Ta có:
\(P=\frac{x^2+y^2}{xy}=\frac{\frac{3}{4}x^2}{xy}+\frac{\frac{x^2}{4}+y^2}{xy}\)
Áp dụng BĐT Cô-si: \(\frac{x^2}{4}+y^2\geq 2\sqrt{\frac{x^2y^2}{4}}=xy\)
\(\Rightarrow \frac{\frac{x^2}{4}+y^2}{xy}\geq \frac{xy}{xy}=1\)
Và: \(\frac{\frac{3}{4}x^2}{xy}=\frac{3x}{4y}\geq \frac{3.2y}{4y}=\frac{3}{2}\)
Do đó: \(P\geq \frac{3}{2}+1=\frac{5}{2}\Leftrightarrow P_{\min}=\frac{5}{2}\)
Dấu bằng xảy ra khi \(x=2y\)