\(\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2022

Đề bài sai, C không có giá trị nhỏ nhất

Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C

12 tháng 7 2017

\(P=\dfrac{1}{x^2+x}+\dfrac{1}{y^2+y}+\dfrac{1}{z^2+z}\)

\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{y\left(y+1\right)}+\dfrac{1}{z\left(z+1\right)}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{y}-\dfrac{1}{y+1}+\dfrac{1}{z}-\dfrac{1}{z+1}\)

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) và BĐT Cauchy Shwarz dạng Engel, ta có:

\(P\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{4}\left(\dfrac{1}{x}+1+\dfrac{1}{y}+1+\dfrac{1}{z}+1\right)\)

\(=\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}\)

\(\ge\dfrac{3}{4}\left[\dfrac{\left(1+1+1\right)^2}{x+y+z}\right]-\dfrac{3}{4}=\dfrac{3}{4}\left(\dfrac{9}{3}-1\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = 1.

Min P = 1,5 <=> x = y = z = 1.

13 tháng 7 2017

T xài phương pháp chuẩn hóa thử, lên C3 có gặp mấy bài này chém dễ dàng, có sai thì đừng ném đá nha :vv.

Ta chứng minh BĐT sau:

\(\dfrac{1}{x^2+x}\ge-0,75x+1,25\) \(\forall x\in\left(0;1\right)\) ( Để ra cái BĐT này t dùng casio, ra cái này là ra hết bài :D )

Thật vậy: \(\dfrac{1}{x^2+x}+0,75x-1,25\ge0\)

\(\Rightarrow\dfrac{1+0,75x\left(x^2+x\right)-1,25\left(x^2+x\right)}{x^2+x}\ge0\)

\(\Rightarrow1+0,75x^3+0,75x^2-1,25x^2+1,25x\ge0\)

\(\Rightarrow0,75\left(x-1\right)^2\left(x+\dfrac{4}{3}\right)\ge0\) \(\forall x\in\left(0;1\right)\) (BĐT này luôn đúng)

Tương tự: \(\dfrac{1}{y^2+y}\ge-0,75y+1,25\)

\(\dfrac{1}{z^2+z}\ge-0,75z+1,25\)

Cộng vế theo vế các BĐT vừa chứng minh, ta được: \(P\ge-0,75\left(x+y+z\right)+1,25.3\)

\(P\ge1\)

Vậy Min P =1 khi x=y=z =1

3 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{2}{\left(x+y\right)^2}=2\left(x+y=1\right)\)

Đẳng thức xảy ra khi \(x=y=\dfrac{1}{2}\)

2 tháng 6 2018

OMG

1 tháng 5 2017

Sửa đề:

\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\)

\(=4x^2+4+\dfrac{1}{x^2}+4y^2+4+\dfrac{1}{y^2}\)

\(=8+4\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

\(\ge8+4.\dfrac{\left(x+y\right)^2}{2}+\dfrac{2}{xy}\)

\(\ge8+4.\dfrac{\left(x+y\right)^2}{2}+\dfrac{2}{\dfrac{\left(x+y\right)^2}{4}}\)

\(=8+4.\dfrac{1}{2}+\dfrac{2}{\dfrac{1}{4}}=18\)

Vậy GTNN là P = 18 đạt được khi \(x=y=\dfrac{1}{2}\)

1 tháng 5 2017

Hình như đầu bài sai hay sao ý đáng ra phải là

P = \(\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\)

30 tháng 3 2018

Ta có : a-\(\dfrac{1}{a}-2=a^2-2a+1=\left(a-1\right)^2\ge0\)

\(\Rightarrow a-\dfrac{1}{a}\ge2\)

Q(x)=2x2+\(\dfrac{2}{x^2}+3y^2+\dfrac{3}{y^2}+\dfrac{4}{x^2}+\dfrac{5}{y^2}\)

=2(\(x^2+\dfrac{1}{x^2}\)) +3(\(y^2+\dfrac{1}{y^2}\))+(\(\dfrac{4}{x^2}+\dfrac{5}{y^2}\))

\(\ge2.2+3.2+9=19\)

Dấu = xảy ra khi x=y=1

AH
Akai Haruma
Giáo viên
19 tháng 4 2018

Lời giải:
Ta có:

\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}-4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}-4xy\right)+\frac{5}{4xy}\)

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)[(x^2+y^2)+2xy]\geq (1+1)^2\)

\(\Rightarrow \frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{(x+y)^2}=4(1)\)

Áp dụng BĐT Cô-si: \(1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)

\(\Rightarrow 1-4xy\geq 0\)

Do đó:

\(\frac{1}{4xy}-4xy=\frac{1-(16x^2y^2)}{4xy}=\frac{(1-4xy)(1+4xy)}{4xy}\geq 0(2)\)

\(xy\leq \frac{1}{4}\Rightarrow \frac{5}{4xy}\geq \frac{5}{4.\frac{1}{4}}=5(3)\)

Từ \((1);(2);(3)\Rightarrow P\geq 4+0+5=9\)

Vậy \(P_{\min}=9\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)