K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

a) vì (3x - 2)(2y-3)=1

=> 3x-2 = 1 ; 2y-3 = 1

Ta có :+) 3x - 2 = 1

=> 3x = 3

=> x= 1

+) 2y-3 = 1

=> 2y = 4

=> y = 2

Vậy x=1; y = 2

 

 

27 tháng 10 2016

b) Vì (x + 1)(2y-1) = 12

=> (x+1) và (2y-1) ϵ Ư(12) = {1 ; 2 ; 6 ; 3 ; 4 ; 12 }

Ta thấy : 2y - 1 là số lẻ

=> 2y-1 ϵ {1 ; 3 }

+ Nếu 2y - 1 = 1

=> 2y = 1 + 1

2y = 2

=> y = 1

=> x+1 = 12

=> x = 11

+ Nếu 2y - 1 = 3

=>2y = 4

=> y = 2

=> x+1 = 6

=> x = 5

Vậy x = 11 ; 5

y = 1 ; 2

 

22 tháng 6 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương

=> ĐPCM

23 tháng 6 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương

=> ĐPCM

13 tháng 8 2016

1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2]) 
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα 
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2 
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3. 
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị. 

2. Đặt x = cosα và y = sinα (với α trên [0,3π/2]) 
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α) 
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1. 
Ta áp dụng P' = 0 tiếp.

1 tháng 7 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chính phương

=> ĐPCM

13 tháng 3 2015

1/ 72

2/ -2;-3

3/ 4 

 4/ 2 HOẶC 3

20 tháng 1 2018

a , |2x+4|+|y-6|=0

=> 2 x + 4 = 0 => x = 0 

=> y - 6 = 0 => y = 6

Vậy x = 0 và y = 6

20 tháng 1 2018

a. 2x+4= 2.0+4=4
y-6=2-6=-4

=)) l4l;l-4l