Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-y=y2-x
<=>(x2-y2)+(x-y)=0
<=>(x-y)(x+y)+(x-y)=0
<=>(x-y)(x+y+1)=0
*)Nếu x-y=0<=>x=y
Tính a theo x ta có
A=x3+x3+3x2(x2+x2)+6x4(x+x)
=2x3+6x4+12x5
*)Nếu x+y+1=0
<=>x=-(y+1)
Tính A theo y ta có
A=(-y-1)3+y3+3(y-1)y[(-y-1)2+y2]+6(-y-1)2y2(-y-1+y)
cái này bạn tự tính
Ta có: \(3x^2-4xy+y^2=3x-3y\)
\(\Leftrightarrow2x^2-2xy+\left(x^2-2xy+y^2\right)=3\left(x-y\right)\)
\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)^2-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+x-y-3\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(3x-y-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\3x-y=3\end{cases}}\)
Vì x và y là 2 số thực phân biệt nên TH x=y không xảy ra\(\Rightarrow3x-y=3\)
Lại có: \(9x^2-6xy+y^2+y-3x+4=\left(3x-y\right)^2+y-3x+4\)
\(=\left(3x-y\right)^2-\left(3x-y\right)+4\)
Ta thay \(3x-y=3\)vào biểu thức trên:
\(\Rightarrow\left(3x-y\right)^2-\left(3x-y\right)+4=3^2-3+4=9+1=10\)
Vậy giá trị cần tìm của biểu thức đó là 10.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
\(x^2-y=y^2-x\)
\(\Rightarrow x^2-y^2+x-y=0\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\)
Vì \(x\ne y\Rightarrow x-y\ne0\Rightarrow x+y+1=0\)
\(\Rightarrow x+y=-1\)và \(x+y-3=-4\)\(\left(1\right)\)
\(M=x^2+2xy-3x-3y+y^2\)
\(=\left(x+y\right)^2-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-3\right)\)
TThay (1) vào M , ta có :
\(M=\left(-1\right).\left(-4\right)=4\)