Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\)
Dấu "=" xảy ra khi \(x=y=z\)
Lời giải:
Ta thấy \(x^3+y^3+z^3\leq 9\)
\(\Leftrightarrow (x+y+z)^3-3(x+y)(y+z)(z+x)\leq 9\)
\(\Leftrightarrow 27-3[(x+y+z)(xy+yz+xz)-xyz]\leq 9\)
\(\Leftrightarrow 3(xy+yz+xz)-xyz\geq 6(\star)\)
Vì \(x,y,z\in [0;2]\Rightarrow (x-2)(y-2)(z-2)\leq 0\)
\(\Leftrightarrow xyz+4\leq 2(xy+yz+xz)\)
Mặt khác \(xyz\geq 0\rightarrow 2(xy+yz+xz)\geq 4\rightarrow xy+yz+xz\geq 2\)
Do đó \(3(xy+yz+xz)-xyz\geq 2+4+xyz-xyz=6\)
Từ đó BĐT \((\star)\) hay ta có đpcm
Dấu bằng xảy ra khi \((x,y,z)=(2,1,0)\) và các hoán vị.