cho x,y E R thỏa mãn x+y=1 chứng minh x mũ 3 + 3xy + y mũ 3=1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2020

B1 : a, M = x3-3xy(x-y)-y3-x2+2xy-y2

= ( x3-y3)-3xy(x-y) -(x2-2xy+y2)

= (x-y)(x2+xy+y2)-3xy(x-y)-(x-y)2

= (x-y) [(x2+xy+y2-3xy-(x-y)]

= (x-y)[(x2-2xy+y2)-(x-y)

= (x-y)[(x-y)2-(x-y)]

= (x-y)(x-y)(x-y-1)

= (x-y)2(x-y-1)

= 72(7-1) = 49 . 6= 294

N = x2(x+1)-y2(y-1)+xy-3xy(x-y+1)-95

= x3+x2-(y3-y2)+xy-(3x2y-3xy2+3xy)-95

= x3+x2-y3+y2+xy-3x2y+3xy2-3xy-95

= (x3-y3)+(x2-2xy+y2)-(3x2y+y2)-(3x2y-3xy2)-95

=(x-y)(x2+xy+y2)+(x-y)2-3xy(x-y)-95

= (x-y)(x2+xy+y2+x-y-3xy)-95

= (x-y)[(x2-2xy+y2)+(x-y)]-95

= (x-y)[(x-y)2+(x-y)]-95

=(x-y)(x-y)(x-y+1)-95

= (x-y)2(x-y+1)-95

= 72(7+1)-95=297

17 tháng 8 2015

Tính A chứ không phải x cái này là sai

Ta có:A=x3+y3+3xy=(x+y)(x2-xy+y2)+3xy

=x2-xy+y2+3xy(do x+y=1)

=x2+2xy+y2

=(x+y)2

=1(do x+y=1)

23 tháng 7 2018

Sửa " \(A\)" thành "\(x\)" , ta có:

\(A=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)(do \(x+y=1\))

\(=x^2+2xy+y^2\)

\(=\left(x+y\right)^2\)

\(=1\)(do \(x+y=1\))

6 tháng 11 2017

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

mong các bn đừng làm như vậy nah

13 tháng 5 2018

a)<=>

A,=(x+y)(x-y)=x^2-y^2

x=(-1/2)^5:(1/2)^4=-1/2

x^2=1/4

y=8^2/(-2)^5=-2

y^2=4

A=1/4-4=-15/4

17 tháng 5 2018
https://i.imgur.com/ZAuiaWv.jpg
23 tháng 2 2019

\(taco:\)

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)

\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{2}\ge3\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=\frac{3}{2}\)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge3\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=\frac{3}{2}\)

\(\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{3}{2}+\frac{3}{2}+\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(dpcm\right)\)

^^

23 tháng 2 2019

Mình giải lại bài này cho đầy đủ hơn nhé: (nãy chỉ là hướng dẫn thôi)

Ta sẽ c/m: \(\frac{1}{x^2+x}\ge-\frac{3}{4}x+\frac{5}{4}\) (1).Thật vậy,xét hiệu hai vế,ta có:

\(VT-VP=\frac{\left(3x+4\right)\left(x-1\right)^2}{4\left(x^2+x\right)}\ge0\)

Suy ra \(VT\ge VP\).Vậy (1) đúng.

Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:

\(VT\ge-\frac{3}{4}\left(x+y+z\right)+\frac{5}{4}.3=\frac{3}{2}^{\left(đpcm\right)}\)

5 tháng 10 2020

a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3

b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81

c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3

d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2

e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2

= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )

= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6

= -3x2 + 39x + 6

= -3( x2 - 13x - 2 )

f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3

= x3 + y3 + x3 - y3 - 2x3

= 0

g) x2 + 2x( y + 1 ) + y2 + 2y + 1

= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )

= x2 + 2x( y + 1 ) + ( y + 1 )2

= ( x + y + 1 )2

= [ ( x + y ) + 1 ]2

= ( x + y )2 + 2( x + y ) + 1

= x2 + 2xy + y2 + 2x + 2y + 1