\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2000}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

\(\sqrt{2000}\)=\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(\Rightarrow2000=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)

                  =\(x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

                 \(\Rightarrow x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2000-1=1999\)

ma \(S^2=x^2\left(1+y^2\right)+y^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

           =\(x^2+x^2y^2+y^2+x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

          =\(x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) =\(1999\Rightarrow S=\sqrt{1999}\)

          

       

29 tháng 10 2018

biết làm rồi

30 tháng 10 2018

VẬy bạn giải ra cho mọi người xem được ko?

Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!

NV
27 tháng 9 2019

\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2000}\)

\(\Rightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2000\)

\(\Rightarrow2x^2y^2+x^2+y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1999\)

Ta có:

\(S^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(S^2=2x^2y^2+x^2+y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(\Rightarrow S^2=1999\Rightarrow S=\pm\sqrt{1999}\)

17 tháng 9 2019

o my god

29 tháng 9 2018

\(\left(x+1\right)\left(y+1\right)=2\)

\(\Leftrightarrow x=\frac{1-y}{1+y}\)

\(P=\sqrt{x^2+y^2-\sqrt{2\left(x^2+1\right)\left(y^2+1\right)}+2}+xy\)

\(=\sqrt{\left(\frac{1-y}{1+y}\right)^2+y^2-\sqrt{2\left(\left(\frac{1-y}{1+y}\right)^2+1\right)\left(y^2+1\right)}+2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\sqrt{\left(\frac{1-y}{1+y}\right)^2+y^2-2.\frac{y^2+1}{y+1}+2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\sqrt{\left(\frac{y^2+1}{y+1}\right)^2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\frac{y^2+1}{y+1}+\left(\frac{1-y}{1+y}\right)y=1\) 

15 tháng 6 2016

Bài 1

Từ giả thiết, bình phương 2 vế, ta được:

\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)

\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)

\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)

\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)

\(=2014\)

\(\Rightarrow A=\sqrt{2014}.\)

Bài 2:

Đặt \(\sqrt{2015}=a>0\)

\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)

Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)

\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)

\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)

Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)

Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)

Bài 3

Áp dụng bất đẳng thức Côsi

\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)

Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)

Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)

15 tháng 6 2016

Em mới hoc lớp 7

27 tháng 3 2019

Thay \(xy+yz+xz=1\) ta có: \(\hept{\begin{cases}1+x^2=xy+yz+xz+x^2=\left(x+z\right)\left(x+y\right)\\1+y^2=xy+yz+xz+y^2=\left(x+y\right)\left(y+z\right)\\1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\end{cases}}\)

\(\Rightarrow S=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+xz\right)=2\)

22 tháng 6 2016

nhận liên hợp ta có  \(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)

mà theo đề bài ta có \(\left(\sqrt{x^2+1}+x\right)\left(y+\sqrt{y^2+1}\right)=1\)

==> \(\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\)

tương tự ta có \(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\)

trừ từng vế 2 pt trên ta có 2x=-2y <=>x=-y

đến đây ok rùi nhé bạn