Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) Áp dụng bất đẳng thức Bunyakovsky
\(\Rightarrow\left(x^4+yz\right)\left(1+1\right)\ge\left(x^2+\sqrt{yz}\right)^2\)
\(\Rightarrow\dfrac{x^2}{x^4+yz}\le\dfrac{2x^2}{\left(x^2+\sqrt{yz}\right)^2}\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{y^2}{y^4+xz}\le\dfrac{2y^2}{\left(y^2+\sqrt{xz}\right)^2}\\\dfrac{z^2}{z^4+xy}\le\dfrac{2z^2}{\left(z^2+\sqrt{xy}\right)^2}\end{matrix}\right.\)
\(\Rightarrow VT\le2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)
Chứng minh rằng \(2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\dfrac{3}{4}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow x^2+\sqrt{yz}\ge2\sqrt{x^2\sqrt{yz}}=2x\sqrt{\sqrt{yz}}\)
\(\Rightarrow\left(x^2+\sqrt{yz}\right)^2\ge4x^2\sqrt{yz}\)
\(\Rightarrow\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}\le\dfrac{x^2}{4x^2\sqrt{yz}}=\dfrac{1}{4\sqrt{yz}}\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}\le\dfrac{1}{4\sqrt{xz}}\\\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\dfrac{1}{4\sqrt{xy}}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\dfrac{1}{4}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)
Chứng minh rằng \(\dfrac{1}{4}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le3\)
Theo đề bài ta có \(x^2+y^2+z^2=3xyz\)
\(\Rightarrow\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}=3\)
\(\Rightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le3\)
\(\Leftrightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\dfrac{1}{\sqrt{xy}}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{y}}{2}\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{xz}}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{z}}{2}\\\dfrac{1}{\sqrt{yz}}\le\dfrac{\dfrac{1}{z}+\dfrac{1}{y}}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) (1)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\dfrac{x}{yz}+\dfrac{y}{xz}\ge2\sqrt{\dfrac{1}{z^2}}=\dfrac{2}{z}\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{y}{xz}+\dfrac{z}{xy}\ge\dfrac{2}{x}\\\dfrac{x}{zy}+\dfrac{z}{xy}\ge\dfrac{2}{y}\end{matrix}\right.\)
\(\Rightarrow2\left(\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}\right)\ge2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\Leftrightarrow\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}\ge\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) (2)
Từ (1) và (2)
\(\Rightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le3\) ( đpcm )
Vậy \(\dfrac{1}{4}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\le\dfrac{3}{4}\)
\(\Rightarrow2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\dfrac{3}{2}\)
Mà \(VT\le2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)
\(\Rightarrow VT\le\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(x=y=z=1\)
3. Ta có :\(x^2\left(1-2x\right)=x.x.\left(1-2x\right)\le\dfrac{\left(x+x+1-2x\right)^3}{27}=\dfrac{1}{27}\)(bđt cô si)
Dấu "=" xảy ra khi :x=1-2x\(\Leftrightarrow x=\dfrac{1}{3}\)
Vậy max của Qlaf 1/27 khi x=1/3
Ta có BĐT:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow6\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)+2016\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow7.\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le2016\)
Xét \(P=\frac{1}{\sqrt{3\left(2x^2+y^2\right)}}+\frac{1}{\sqrt{3\left(2y^2+z^2\right)}}+\frac{1}{\sqrt{3\left(2z^2+x^2\right)}}\)
\(P^2=\left(\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2x^2+y^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2y^2+z^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2z^2+x^2}}\right)^2\)
Áp dụng BĐT Bunhiacopxki ta có:
\(P^2\le\left(\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2\right)\left(\left(\frac{1}{\sqrt{2x^2+y^2}}\right)^2+\left(\frac{1}{\sqrt{2y^2+z^2}}\right)^2+\left(\frac{1}{\sqrt{2z^2+x^2}}\right)^2\right)\)
\(\Leftrightarrow P^2\le\frac{1}{2x^2+y^2}+\frac{1}{2y^2+z^2}+\frac{1}{2z^2+x^2}\)
Mặt khác ta có:
\(\frac{1}{2x^2+y^2}=\frac{1}{x^2+x^2+y^2}\le\frac{1}{9}\left(\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\frac{1}{2y^2+z^2}\le\frac{1}{9}\left(\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
\(\frac{1}{2z^2+x^2}\le\frac{1}{9}\left(\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}\right)\)
\(\Rightarrow P^2\le\frac{1}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le\frac{1}{3}.2016=672\)
\(\Rightarrow P\le4\sqrt{42}\)
Dấu '=' xảy ra khi \(x=y=z=\sqrt{\frac{1}{672}}\)
a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)
Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2
b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)
Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)
Ta có: \(x^2+y^2+z^2=1\)
\(\Rightarrow0\le x^2,y^2,z^2\le1\)
Theo đề bài thì:
\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)
\(\Rightarrow P\le1\)
Dấu = xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Với \(x^2+y^2+z^2=1\),ta có:
\(P=xy+yz+zx+\frac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\right]\)
\(=xy+yz+zx+x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\)
\(=x^2y^2+y^2z^2+z^2x^2+xy\left(1-z^2\right)+yz\left(1-x^2\right)+zx\left(1-y^2\right)\)
\(=x^2y^2+y^2z^2+z^2x^2+xy\left(x^2+y^2\right)+yz\left(y^2+z^2\right)+zx\left(z^2+x^2\right)\)
\(=\frac{2x^2y^2+2y^2z^2+2z^2x^2+\left(x^2+y^2\right)^2+\left(y^2+z^2\right)^2+\left(z^2+x^2\right)^2}{2}\)
\(=\frac{2\left(x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2\right)}{2}=\frac{2\left(x^2+y^2+z^2\right)^2}{2}=1\)
Đẳng thức xảy ra khi \(x=y=z=\pm\frac{\sqrt{3}}{3}\)
Ta có: \(2\left(x^2+y^2\right)=1+xy\)
\(\Leftrightarrow x^2+y^2=\frac{1+xy}{2}\)
\(P=7\left(x^4+y^4\right)+4x^2y^2\)
\(=7x^4+7y^4+4x^2y^2\)
\(\Rightarrow P=28x^3+28y^3+16xy\)
\(\Leftrightarrow P=0\Leftrightarrow28x^3+28y^3+16xy=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=4\end{cases}}\)
\(\Rightarrow P_{Min}=15\) và \(Max_P=\frac{12}{33}\)
Bài 5: Đặt \(t=\dfrac{\left(x+y+1\right)^2}{xy+x+y}\)
Ta đã biết bđt quen thuộc là \(x^2+y^2+1\ge xy+x+y\)
Vậy nên ta sẽ chứng minh \(t\geq 3\)
Thật vậy: \(t\geq 3\Leftrightarrow 2(x+y+1)^2\geq 6(x+y+xy)\)
\(\Leftrightarrow (x-y)^2+(x-1)^2+(y-1)^2\geq 0\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Ta có: \(A=\dfrac{8t}{9}+\left(\dfrac{t}{9}+\dfrac{1}{t}\right)\geq \dfrac{24}{9}+\dfrac{2}{3}=\dfrac{10}{3}\)
Dấu "=" xảy ra khi \(t=3\Leftrightarrow x=y=1\)
3)
x^2 = 2x + \(\sqrt{2x-1}\) \(\Rightarrow\) x^2 = ( 2x -1 ) + \(\sqrt{2x-1}\) +1
\(\Rightarrow\) x^2 = (\(\sqrt{2x-1}\) + 1)^2 chuyển vế rồi phân tích thành nhân tử là ok
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
từ giả thiết: \(x^2y+x+1\le y\Leftrightarrow y-x^2y-x-1\ge0\)
\(\Leftrightarrow y\left(1-x\right)\left(1+x\right)-\left(1+x\right)\ge0\)
\(\left(1+x\right)\left(y-xy-1\right)\ge0\)
x>0 ,\(\Rightarrow y-xy-1\ge0\Leftrightarrow1-x-\dfrac{1}{y}\ge0\)
\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Leftrightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)
\(P=\dfrac{xy}{\left(x+y\right)^2}=\dfrac{1}{\dfrac{x}{y}+\dfrac{y}{x}+2}=\dfrac{1}{\dfrac{y}{x}+\dfrac{16x}{y}-\dfrac{15x}{y}+2}\le\dfrac{1}{10-\dfrac{15x}{y}}\le\dfrac{1}{10-\dfrac{15}{4}}=\dfrac{4}{25}\)dấu = xảy ra khi \(x=\dfrac{1}{y}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2};y=2\)
c lm cho t luôn bài hình vs