\(x^2+y^2=1\)

tìm GTLN P= xy + 3x + 3y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

\(10=4x^2+4y^2+6=\left(x^2+y^2\right)+3\left(x^2+1\right)+3\left(y^2+1\right)\)

\(2xy+6x+6y=2\left(xy+3x+3y\right)\Rightarrow P\le5\) tại \(x=y=\frac{1}{\sqrt{2}}\)

20 tháng 9 2018

\(3xy-1=x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+1\right)\ge0\)

\(\Leftrightarrow\sqrt{xy}\ge1\Leftrightarrow xy\ge1\)

Và \(xy+x+y+1=4xy\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=4xy\)

Ta có: \(\frac{3x}{y\left(x+1\right)}-\frac{1}{y^2}=\frac{3xy-x-1}{y^2\left(x+1\right)}=\frac{y}{y^2\left(x+1\right)}=\frac{1}{y\left(x+1\right)}\)

\(M=\frac{1}{y\left(x+1\right)}+\frac{1}{x\left(y+1\right)}=\frac{2xy+x+y}{4x^2y^2}=5xy-1\)

Xét hàm số \(f\left(t\right)=\frac{20t^2-8t\left(5t-1\right)}{16t^4}=\frac{8t-20t^2}{16t^4}\le0\) 

Nên hàm số nghịch biến với \(t\ge1\)

\(\Rightarrow f\left(t\right)_{Max}=f\left(1\right)=1\Leftrightarrow M_{Max}=1\)

23 tháng 10 2018

Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\Rightarrow a+b+ab=3\)

Ta có:\(3=a+b+ab\ge3\sqrt[3]{a^2b^2}\Rightarrow ab\le1\)

Suy ra

\(M=\frac{ab}{a+1}+\frac{ab}{b+1}=ab\left(\frac{a+1+b+1}{ab+a+b+1}\right)=\frac{ab.\left(5-ab\right)}{4}=\frac{-\left[\left(ab\right)^2-2ab+1\right]+3ab+1}{4}=\frac{-\left(ab-1\right)^2+3ab+1}{4}\le1\)Dấu bằng xảy ra khi a=b=1

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

19 tháng 12 2021

Cho \(xy=1\)và \(x,y>0\)

Tìm \(M_{max}=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)

\(M=\frac{x}{x^4+\frac{1}{x^2}}+\frac{x}{y^2+\frac{1}{y^2}}\)

\(M=\frac{x^4}{x^6+1}+\frac{y^3}{y^6+1}\)

Áp dụng BĐT Cauchy

\(x^6+1\ge2x^3=>\frac{x^2}{x^6+1}\le\frac{1}{2}\)

Tương tự \(\frac{y^3}{y^6+1}\le\frac{1}{2}\)

\(=>M\le1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}xy=1\\x=1\\y=1\end{cases}}\Leftrightarrow x=y=1\)

Vậy \(M_{max}=1\)khi \(x=y=1\)

24 tháng 5 2020

Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:

\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)

Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:

\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)

\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)

Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)

Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)

\(\le1+\frac{2017}{3}=\frac{2020}{3}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

20 tháng 9 2019

\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)

\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)

\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)

\(=5\left(a+b\right)=5.2016=10080\)

23 tháng 9 2019

alibaba nguyễn Em kiểm tra lại bài làm của mình nhé! 

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

29 tháng 5 2017

Có: \(\hept{\begin{cases}2x^2-xy-y^2=P\\x^2+2xy+3y^2=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2-4xy-4y^2=4P\\Px^2+2xy+3Py^2=4P\end{cases}}\)

\(\Leftrightarrow8x^2-4xy-4y^2-Px^2-2Pxy-3Py^2=0\)

\(\Leftrightarrow\left(8-P\right)x^2-xy\left(4+2P\right)-y^2\left(4+3P\right)=0\)

* Với \(y=0\)

\(\Rightarrow\left(8-P\right)x^2=0\Rightarrow\orbr{\begin{cases}8-P=0\\x=0\end{cases}}\Rightarrow\orbr{\begin{cases}P=8\\P=0\end{cases}}\)

* Với \(y\ne0\), đặt \(t=\frac{x}{y}\)

\(pt\Leftrightarrow\left(8-P\right)t^2-\left(4+2P\right)t-\left(4+3P\right)=0\)

   - Nếu \(P=8\Rightarrow t=-\frac{7}{5}\)

   - Nếu \(P\ne8\Rightarrow\)pt có nghiệm \(\Leftrightarrow\Delta\ge0\Rightarrow\left(4+2P\right)^2-4\left(8-P\right)\left(4+3P\right)\ge0\)

\(\Leftrightarrow16+8P+4P^2-4\left(32-3P^2+20P\right)\ge0\)

\(\Leftrightarrow-8P^2+96P+144\ge0\)

\(\Leftrightarrow6-3\sqrt{6}\le P\le6+3\sqrt{6}\)

Vậy \(MinP=6-3\sqrt{6};MaxP=6+3\sqrt{6}\)


⇒ 8 − P x
2 = 0⇒ 8 − P = 0
x = 0 ⇒ P = 8
P = 0
* Với y ≠ 0, đặt t =
y
x
pt⇔ 8 − P t
2 − 4 + 2P t − 4 + 3P = 0
   - Nếu P = 8⇒t = −
5
7
   - Nếu P ≠ 8⇒pt có nghiệm ⇔Δ ≥ 0⇒ 4 + 2P
2 − 4 8 − P 4 + 3P ≥ 0
⇔16 + 8P + 4P
2 − 4 32 − 3P
2
+ 20P ≥ 0
⇔− 8P
2
+ 96P + 144 ≥ 0
⇔6 − 3 6 ≤ P ≤ 6 + 3 6
Vậy MinP = 6 − 3 6 ;MaxP = 6 + 3 6