Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)
=>\(B=\frac{\left(a^2x+b^2y+c^2z\right)^3}{x^3+y^3+z^3}=\frac{\left(a^2ak+b^2bk+c^2ck\right)^3}{\left(ak\right)^3+\left(bk\right)^3+\left(ck\right)^3}=\frac{\left(a^3k+b^3k+c^3k\right)^3}{a^3k^3+b^3k^3+c^3k^3}\)
\(=\frac{k^3\left(a^3+b^3+c^3\right)^3}{k^3\left(a^3+b^3+c^3\right)}=\left(a^3+b^3+c^3\right)^2\)
cảm ơn trà my nhiều
bài nè ko phải gửi đi lấy điểm đâu các bn.
ta có: x=2 và y=3
thay vào biểu thức ta có:
A=\(\frac{5.2+3.3}{6.2-7.3}=\frac{10+9}{12-21}=\frac{-19}{9}\)
2)
ta có: x= 2 y=1
thay vào biểu thức ta có:
A=\(\frac{2.2-1}{2+2.1}=\frac{4-1}{2+2}=\frac{3}{4}\)
\(x^2-2y^2=xy\)
\(\Leftrightarrow\left(x^2+xy\right)-\left(2y^2-2xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
\(\Rightarrow x=2y\)
\(\Rightarrow A=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
Thế thì với trình của bạn chỉ có thể làm cách này :)
Có : \(\frac{2x-y}{x+2y}=\frac{3}{4}\)
\(\Rightarrow4\left(2x-y\right)=3\left(x+2y\right)\)
\(\Rightarrow8x-4y=3x+6y\)
\(\Rightarrow5x=10y\)
\(\Rightarrow x=2y\)
\(\Rightarrow\frac{x}{y}=2\)
Kurosaki Akatsu khinh ng v~
Bài này lm tích chéo
(2x-y)*4=(2y+x)*3
=>8x-4y=6y+3x
=>5x=10y
=>x=2y
=>x/y=2
Vậy.....
Vi x/y=2=>x=2y.
Thay x=2y vao bt A ta co A=\(\frac{2.2y-y}{2y+2y}\)=\(\frac{3y}{4y}=\frac{3}{4}\)