\(\frac{1}{x^2}\))(\(1-\frac{1}{y^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

Hình như không tìm được Max đâu bạn ơi

https://vn.answers.yahoo.com/question/index?qid=20120128010639AAEieuD

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

10 tháng 10 2017

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\le3-\frac{9}{3+x+y+z}=3-\frac{9}{3+1}=\frac{3}{4}\)

10 tháng 10 2017

= 1+x+1+y+1+z

= 3+x+y+z

=3+1=4

6 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,

Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new

Help meeee! thanks nhiều ạ

8 tháng 12 2019

Đừng tag níc phụ này.

Mà cái câu 2a) bên dưới gì đó ko có đk gì của a, b, c sao giải đc?

4 tháng 5 2019

1.

Đầu tiên ta cm: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\) (cô si)

Dấu "=" khi a = b.

Áp dụng:

\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) \(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}\cdot4xy}+\frac{5}{\left(x+y\right)^2}\)

\(=4+2+5=11\)

Vậy MinA = 11 khi \(x=y=\frac{1}{2}\)

4 tháng 5 2019

\(P=\frac{x^2+1}{x^2-x+1}\Leftrightarrow x^2+1=P\left(x^2-x+1\right)\)

\(\Leftrightarrow x^2+1-Px^2+Px-P=0\)(*)

\(\Leftrightarrow\left(1-P\right)x^2+Px+\left(1-P\right)=0\)

\(\Delta=P^2-4\left(1-P\right)^2\)

\(=P^2-4\left(1-2P+P^2\right)=-3P^2+8P-4\)

Để P có GTNN và GTLN thì phương trình (*) có nghiệm

\(\Leftrightarrow\Delta\ge0\Leftrightarrow-3P^2+8P-4\ge0\)

\(\Leftrightarrow-3P^2+2P+6P-4\ge0\)

\(\Leftrightarrow-P\left(3P-2\right)+2\left(3P-2\right)\ge0\)

\(\Leftrightarrow\left(3P-2\right)\left(2-P\right)\ge0\)

\(\Leftrightarrow\frac{2}{3}\le P\le2\)

Vậy \(min_P=\frac{2}{3}\Leftrightarrow x=-1\); \(max_P=2\Leftrightarrow x=1\)

21 tháng 7 2018

sửa đwf là xy+yz+zx=1 nhá !

Thay 1=xy+yz+zx vào, ta có 

\(\frac{x}{\sqrt{x^2+1}+x}=\frac{x}{\sqrt{x^2+xy+yz+zx}+x}=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+x}\)

Áp dụng BĐT bu-nhi-a, ta có 

\(\sqrt{\left(x+y\right)\left(x+z\right)}\ge\sqrt{xy}+\sqrt{xz}\Rightarrow\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+x}\le\frac{x}{\sqrt{xy}+\sqrt{xz}+x}\) =\(\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

tương tự rồi cộng lại, ta có 

\(A\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{y}}=1\)

dấu = xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

^_^

3 tháng 1 2017

Tìm \(n\in N\) để \(3^{2n+1}+2^{4n+1}⋮25\)