\(P=\frac{20}{x^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

Áp dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)

Dấu = xảy ra <=>x=y=1/2

^_^

27 tháng 3 2019

Theo cô-si thì \(2\sqrt{2x.3y}\le2x+3y\le2\Rightarrow xy\le\frac{1}{6}\)

\(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{26}{3xy}\)

                                            \(\ge\frac{\left(2+2\right)^2}{4x^2+9y^2+12xy}+\frac{26}{\frac{3.1}{6}}\)

                                            \(=\frac{14}{\left(2x+3y\right)^2}+\frac{26.6}{3}=56\)

\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)

16 tháng 8 2020

ta thấy \(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{26}{3xy}\ge\frac{16}{\left(2x+3y\right)^2}+\frac{26}{3xy}\)(1)

lại có \(2x+3y\le2\Leftrightarrow\left(2x+3y\right)^2\le4\Leftrightarrow4x^2+9y^2+12xy\le4\left(2\right)\)

mặt khác \(4x^2+9y^2\ge12xy\)(theo Bất Đẳng Thức Cosi cho x,y>0) (3)

từ (1) và (2) => \(12xy+12xy\le4\Leftrightarrow3xy\le\frac{1}{2}\left(4\right)\)

từ (1) và (4) => \(A\ge\frac{16}{4}+\frac{26}{\frac{1}{2}}=4+52=56\)

dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)

16 tháng 3 2021

\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)

\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)

\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)

Áp dụng bất đẳng thức AM-GM ta có :

\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)

Vậy GTNN của Q là 1 <=> x = y = 2

17 tháng 3 2021

Or

\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*

Do đó \(Q\ge1\)

Đẳng thức xảy ra khi x = y = 2

16 tháng 1 2020

\(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)

\(=x+y+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\ge x+y+\frac{3}{x+y}\)

\(=\left(x+y+\frac{16}{9\left(x+y\right)}\right)+\frac{11}{9\left(x+y\right)}\)

\(\ge\frac{4}{3}+\frac{11}{9\cdot\frac{4}{3}}=\frac{43}{12}\)

Tại \(x=y=\frac{2}{3}\)

\(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\rightarrow\left(a,b,c\right)\)

\(\Rightarrow ab+bc+ca=3\)

Áp dụng bđt Cauchy-Schwarz ta có

\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)

Dấu "=" xảy ra khi a=b=c=1 => x=y=z=1